На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


аттестационная работа Теоретические основы модульной системы обучения, сущность и принципы модульного обучения и условия их реализации. Организация учебно-воспитательного процесса обучения стереометрии, модульное структурирование и организация учебных занятий по стереометрии.

Информация:

Тип работы: аттестационная работа. Предмет: Педагогика. Добавлен: 04.01.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


134
Разработка модели обучения школьному курсу стереометрии на модульной основе

Выпускная квалификационная работа
по специальности 050201 «Математика»
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Глава 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МОДУЛЬНОЙ СИСТЕМЫ ОБУЧЕНИЯ
1.1 АНАЛИЗ ЛИТЕРАТУРЫ ПО ПРОБЛЕМЕ ИССЛЕДОВАНИЯ
1.2 СУЩНОСТЬ МОДУЛЬНОГО ОБУЧЕНИЯ
1.3 ПРИНЦИПЫ МОДУЛЬНОГО ОБУЧЕНИЯ И УСЛОВИЯ ИХ РЕАЛИЗАЦИИ
1.4 ОРГАНИЗАЦИЯ УЧЕБНО-ВОСПИТАТЕЛЬНОГО ПРОЦЕССА ОБУЧЕНИЯ СТЕРЕОМЕТРИИ
1.5 МОДУЛЬНОЕ СТРУКТУРИРОВАНИЕ И ОРГАНИЗАЦИЯ УЧЕБНЫХ ЗАНЯТИЙ ПО СТЕРЕОМЕТРИИ
ВЫВОДЫ ПО ПЕРВОЙ ГЛАВЕ
Глава 2. РАЗРАБОТКА МОДУЛЬНОЙ СТРУКТУРЫ ПРОЦЕССА ОБУЧЕНИЯ СТЕРЕОМЕТРИИ В СИСТЕМЕ ШКОЛЬНОГО ОБРАЗОВАНИЯ
2.1 МОДЕЛЬ ОБУЧЕНИЯ ШКОЛЬНОМУ КУРСУ СТЕРЕОМЕТРИИ НА МОДУЛЬНОЙ ОСНОВЕ
2.2 ОРГАНИЗАЦИЯ ВНЕДРЕНИЯ РАЗРАБОТАННОЙ МОДЕЛИ
2.3 АНАЛИЗ ВНЕДРЕНИЯ МОДЕЛИ
2.4 СОПОСТАВЛЕНИЕ РЕЗУЛЬТАТОВ КОНСТАТИРУЮЩЕГО И КОНТРОЛЬНОГО СРЕЗОВ
ВЫВОДЫ ПО ВТОРОЙ ГЛАВЕ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Приложение 5

ВВЕДЕНИЕ

В соответствии с современными тенденциями развития общества для системы образования все более характерными становятся такие принципиальные новые черты, как динамизм и вариативность.

Традиционная система организации учебно-воспитательного процесса находится в противоречии с законами и закономерностями психофизиологической деятельности человека и теории управления. Классно-урочная система характеризуется многопредметностью и низкой частотностью учебных предметов, что предопределяет постоянную перегрузку ученика и учителя. Ведущим типом учебного занятия остается комбинированный урок, нарушающий логику учебной деятельности и особенно нежелательный в старших классах школы.

Отечественная и зарубежная практика показывает перспективность принципиально иного по организации и технологии модульного обучения, которое характеризуется опережающим изучением теоретического материала укрупненными блоками-модулями, алгоритмизацией учебной деятельности, завершенностью и согласованностью циклов познания и других циклов деятельности. Поуровневая индивидуализация учебной и дифференциация обучающей деятельности создают ситуацию выбора для учителя и ученика и обеспечивают школьнику возможность дальнейшего успешного самообразования и профессионального образования [49].

Если рассматривать модульную систему организации учебно-воспитательного процесса утилитарно, то обучающая технология будет сведена к следующему: законченность блоков содержания, интеграция видов и форм обучения, каждый учащийся достигает поставленных целей и может самостоятельно работать с предложенной ему индивидуальной учебной программой. Гибкость такой технологии объясняется адаптацией к индивидуальным особенностям обучаемых за счет исходной диагностики знаний, темпа усвоения и индивидуализации обучения.

В подавляющем большинстве случаев использование технологии модульного обучения осуществляется на эмпирической основе, без должной проработки ее научно-методической стороны, исходя только из опыта и здравого смысла преподавателя. Для перехода педагогической системы обучения стереометрии в новое качество необходима дальнейшая разработка теоретико-методологических оснований модульного обучения и вытекающих из них научных средств познания, форм и методов обучения, соответствующих модульной системе [8].

Таким образом, актуальность темы исследования определяется состоянием практики обучения геометрии в системе школьного образования. Она обусловлена необходимостью обоснованного подхода к разработке средств на базе модульных технологий с диагностированием уровней сформированности знаний, умений учащихся на различных этапах формирования геометрических понятий.

Проблема исследования: каковы теоретико-методологические основы процесса обучения стереометрии школьников 10-11-х классов на модульной основе, влияющие на повышение качественного уровня геометрической подготовки учащихся.

Объектом исследования является процесс обучения геометрии в школе на модульной основе.

Предмет исследования: основные организационные и содержательные компоненты модели обучения школьному курсу стереометрии на модульной основе.

Цель исследования: теоретически обосновать и разработать модель обучения школьному курсу стереометрии на модульной основе.

В соответствии с поставленной целью была сформулирована следующая гипотеза исследования: овладение школьным курсом стереометрии будет наиболее эффективным при условии внедрения в процесс обучения разработанной нами модели с использованием модульной технологии, позволяющей осуществлять целенаправленное управление формированием и совершенствованием практических навыков учащихся, адаптировать процесс обучения к индивидуально-психологическим особенностям, способствуя тем самым развитию активного и творческого подхода к изучению стереометрии.

Задачи исследования:

1. Изучить состояние проблемы использования модульного обучения в психолого-педагогической теории и практике.

2. Выявить в ходе научно-педагогического анализа основные направления и степень разработанности приемов модульного обучения в средней школе.

3. Раскрыть сущность и принципы модульной технологии, условия ее реализации в процессе обучения стереометрии.

4. Определить перспективные направления совершенствования процесса овладения курсом стереометрии, способствующие повышению эффективности геометрической подготовки школьников.

5. Разработать и теоретически обосновать модель обучения школьному курсу стереометрии на модульной основе.

6. Определить педагогическую эффективность использования модульной технологии в преподавании стереометрии.

7. Экспериментально проверить эффективность и результативность разработанной модели обучения школьному курсу стереометрии на модульной основе.

Теоретико-методологическую базу исследования составляют:

Философские, психолого-педагогические концепции познания как общественно-исторического процесса (Шамовой Т.И., Гараева В.М., Громковой М.Т., Гальпериным П.Я.)

Использование системного подхода в разработке модульного обучения (Андреева М.В., Лебедевой М.Б., Третьякова П.И., Чернилова Н.Г.).

Методология педагогических исследований, в которых рассмотрены закономерности соотношения обучения и развития интеллекта (Апатова Н.В.).

Теоретической базой исследования послужили работы, посвященные тенденциям развития информатики в современной общеобразовательной средней школе: Н.В. Апатовой, Т.Н. Брусенцовой, Я.А. Ваграменко, Ю.А. Гольцмана, Т.Ю. Ильиной, Т.Б. Казиахмедова, М.П. Лапчика, Н.И. Пака, Ю.А. Первина, И.В. Роберт, И.А. Румянцева, И.В. Симоновой, Е.И. Соколовой.

Для решения поставленных задач использовались следующие методы исследования: анализ педагогической и методической литературы; теоретические методы для разработки модели обучения школьному курсу стереометрии на модульной основе; эмпирические методы для внедрения разработанной модели обучения стереометрии на модульной основе в процесс овладения предметом; математические методы для обработки данных, полученных в ходе внедрения разработанной методики.

Практическая значимость работы заключается в разработке модели обучения школьному курсу стереометрии на модульной основе и разработке обучающих модулей по темам: «Параллельность прямых и плоскостей в пространстве», «Перпендикулярность прямых и плоскостей в пространстве».

Теоретическая значимость исследования состоит в следующем:

1. Проведен анализ педагогической, психологической и методической литературы по проблеме исследования, обобщены и систематизированы научные положения в данной области.

2. Выделены принципы модульного обучения стереометрии.

3. Разработана методика обучения стереометрии с использованием модели овладения курсом.

Первая глава посвящена теоретическому обоснованию модульной системы обучения. Проанализирована литература по проблеме исследования. Рассмотрены сущность и принципы модульного обучения. А также разработана модель обучения школьному курсу стереометрии.

Во второй главе представлены результаты внедрения разработанной нами модели в процесс обучения стереометрии, анализ проведенных уроков.

Глава 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МОДУЛЬНОЙ СИСТЕМЫ ОБУЧЕНИЯ

1.1 АНАЛИЗ ЛИТЕРАТУРЫ ПО ПРОБЛЕМЕ ИССЛЕДОВАНИЯ

Модульное обучение в первоначальном виде зародилось в конце 60-х годов и быстро распространилось в англоязычных странах, прежде всего, в США, Англии и Канаде. Вскоре им заинтересовались и исследователи России. В настоящее время накоплен достаточный материал научных сведений по вопросам модульного обучения, анализу которых посвящен данный обзор.

В основу модульного обучения положено понятие «модуль», характеристика которого в оценке различных исследователей по одним позициям совпадала достаточно близко, а по некоторым имелись существенные различия. Так, в начальный период внедрения модульного обучения в образовательную систему США и Англии в понятие модуля входил определенный набор учебных материалов, что, по мнению П.А. Юцявичене, отождествляется с методом обучения «пакет». При дальнейшем развитии модульного обучения А.А. Гуцински в понятие модуль включает «выражение самостоятельной группы идей (знаний), которые передаются по дидактическим каналам, соответствующим природе знаний». Б. Гольдшмид и М. Гольдшмид понимают модуль как формирование самостоятельной планируемой единицы учебной деятельности [49]. Примерно такой же точки зрения придерживается В.М. Гараев, С.И. Куликов, Е.М. Дурко, вкладывая в понятие модуль общую тему учебного курса или актуальной научной проблемы [12].

В дальнейшем понятие модуля становится более конкретным. Так, В.М. Гараев [12] формулирует понятие модуль как относительно самостоятельную часть определенной системы, несущую функциональную нагрузку, что в обучении соответствует «дозе» информации или действия, достаточной для формирования тех или иных профессиональных знаний и навыков будущего специалиста. По мнению С.И. Самыгина модуль представляет собой логически завершенную часть учебного материала [32]. П.А. Юцявичене характеризует модуль как функциональный узел, который является основным средством модульного обучения, т.е. законченным блоком информации [49]. Ю.А. Устынюк, конкретизируя характеристику содержания модуля, предлагает определить его как самостоятельную тему или раздел курса, в котором рассматривается одно фундаментальное понятие или группа родственных понятий. Аналогично Н.В. Шумякова считает: каждому модулю должна соответствовать глава или раздел учебника.

Мы будем придерживаться следующей точки зрения: модуль - это логически завершенная часть учебного материала.

Анализируя точки зрения исследуемых авторов, можно увидеть различие в обозначениях проблемы модульности: модульное обучение - МО, модульная система обучения - МСО, модульная технология организации обучения, модульная система высшего образования, рейтинговая интенсивная технология модульного обучения - РИТМ, проблемно-модульный вариант, модульно-блочная система, технология модульного обучения - ТМО и т.д.

Первоначально модульное обучение было положено в основу индивидуального обучения. Впоследствии зона применения модульного обучения стала расширяться. Так, П.А. Юцявичене отмечает, что его сущность состоит в том, что обучающийся более самостоятельно может работать с предложенной ему индивидуальной программой, включающей в себя целевой план действий, банк информации и методическое руководство по достижению поставленных дидактических целей. Функции педагога могут варьировать от информационно-контролирующей, до консультативно-координирующей [49].

Основы модульного обучения разработаны П.А. Юцявичене в монографии "Теория и практика модульного обучения". Основополагающей идеей является идея модуля.

В книге П.И.Третьякова [43] излагается сущность модульного обучения. К его ведущим принципам относятся принципы модульности, структуризации содержания обучения на обособленные элементы, динамичности, деятельности, гибкости, осознанной перспективы, разносторонности методического консультирования и паритетности.

Модуль может выступать как программа обучения, индивидуализированная по содержанию, методам, уровню самостоятельности, темпу учебно - познавательной деятельности ученика. В сущностных характеристиках модульного обучения заложено его отличие от других систем обучения [34].

Во-первых, содержание обучения представляется в законченных самостоятельных комплексах (информационных блоках), усвоение которых осуществляется с целью. Дидактическая цель формируется для обучающегося и содержит в себе не только указания на объем изучаемого содержания, но и на уровень его усвоения. Кроме этого каждый ученик получает от учителя советы в письменной форме, как рациональнее действовать, где найти нужный учебный материал.

Во-вторых, меняется форма общения учителя и ученика. Оно осуществляется через модули и плюс личное индивидуальное общение. Именно модули позволяют перевести обучение на субъект - субъективную основу.

В-третьих, ученик работает максимум времени самостоятельно, учится целеполаганию, самопланированию, самоорганизации, самоконтролю, самооценке. Это дает возможность ему осознать себя в деятельности, самому определить уровень усвоения знаний, видеть проблемы в своих знаниях и умениях. Несомненно, что учитель тоже управляет учебно - познавательной деятельностью учащихся через модуль, но это более мягкое, а главное сугубо целенаправленное управление.

В-четвертых, наличие модулей с негативной основой позволяет учителю индивидуализировать работу с отдельными учениками [26].

Далее при оценке модульной системы необходимо отметить ее значимость стимулирования учебно-познавательной активности школьников, организацию познавательной деятельности по овладению научными знаниями, умениями и навыками. Так, по мнению А.Н. Алексюк и С.А. Кашина, при модульной системе обучения «обучаемый значительно более самостоятельно, чем при традиционной системе, может работает по учебной программе, предполагающей наличие плана работы, банка информации и методических указаний по достижению поставленных в обучении целей». С точки зрения П.И. Третьякова и И.Б. Сенновского модульное обучение формирует навыки самообразования: «каждый учащийся достигает поставленных целей и может самостоятельно работать с предложенной ему индивидуальной учебной программой, включающей в себя целевой план действий, банк информации и методическое руководство по достижению поставленных дидактических целей» [43, с. 31]. В этом же контексте характеризуется Е.И. Поповым рейтинговая интенсивная технология модульного обучения (РИТМ), как технология, которая активизирует работу учащихся в течении года и организацию индивидуальной работы в ходе обычных групповых занятий, повышает творческое начало всех участников педагогического процесса, максимально индивидуализирует обучение, обеспечивает интенсификацию и активизацию самостоятельной работы студентов [35]. По мнению В.Ж. Куклина и В.Г. Наводного эта система для школьников обеспечивает постоянную самодиагностику и стимулирование качественной и ритмичной работы, а для преподавателя - непрерывный контроль учебного процесса, диагностику текущего состояния успеваемости с использованием рейтинговой шкалы оценок [22]. Таким образом, модульное обучение является эффективным средством индивидуализации взаимоотношений преподавателя с обучающимися. П.А. Юцявичене отмечает, что «функции педагога могут варьировать от информационно-контролирующей, до консультативно-координирующей» [49, с. 55]. По мнению П.И. Третьякова и И.Б. Сенновского, при модульном обучении информационные функции преподавателя заменяются консультированием и управлением с сохранением его ведущей роли в рамках субъект-субъектных отношений в педагогическом процессе [40]. Анализируя результаты исследования модульного обучения, выявляется широкий спектр целей его внедрения в современную практику школьного образования. В первоначальный период применения модульного обучения его цель А.А. Гуцински определил как «выражение самостоятельной группы идей (знаний)». В процессе дальнейшего развития модульного обучения его цели стали рассматриваться значительно шире. Так, Б. Гольдшмид и М. Гольдшмид понимают реализацию этого принципа как «формирование самостоятельной планируемой единицы учебной деятельности, помогающей обучающемуся достичь строго определенных целей» [49, с. 56]. По мнению А.Н. Алексюк, С.А. Кашина, переход к модульной организации обучения предполагает существенное увеличение удельного веса и значения самостоятельной работы в учебном процессе, что требует значительного повышения самостоятельности, инициативы, творчества, социально-профессиональной активности будущих специалистов. Это обуславливает необходимость реализации новых методических подходов к решению задач педагогического стимулирования учебной активности студентов.

Исследуя вопросы, касающиеся психологической нагрузки учащихся, М.Т. Громкова считает важным, что «система обучения, основанная на продуманном делении изучаемого материала на модули, на сдаче зачета должна быть только тогда, когда ученик готов его сдать, - это кардинальное решение проблемы стрессов, отсевов и поломанных судеб» [14, с.127 - 128].

Продолжая рассматривать основные цели модульного обфчения, можно привести мнение П.И. Третьякова и И.Б. Сенновского, которые выделяют значимой целью формирование у выпускников навыков самообразования. На основе осознанного целеполагания и самополагания предполагается построение всего учебного процесса с иерархией ближних, средних (общие учебные умения и навыки) и перспективных (развитие способностей личности) целей [43]. В.В. Родина целью модульно-блочной системы называет не только систематизацию процесса изучения дисциплины и контроль знаний, но и возможность ранжирования всех учеников по степени освоения ими программы курса, которые приносят в процесс обучения элементы состязательности» [38]. Модульная система обучения несет в себе значительные преимущества в плане активизации учебного процесса, стимулирует систематическую работу над учебным материалом, заставляет регулярно готовить не только практическую, но и лекционную часть курса, что положительно отражается на качестве знаний. Таким образом, модульная система обучения позволяет кардинально улучшить качество подготовки выпускников школы, полнее учитывать требования научно-технического прогресса [45].

Многие исследователи отмечают важность методического обеспечения модульного обучения. В.П. Лапчинская, анализируя применяемую в школах Англии и Швеции модульную систему обучения, отмечает, что конструкция учебного материала обеспечивает каждому обучающемуся достижение поставленных дидактических задач, имеет завершенность содержания учебного материала в модуле и интеграцию разных видов и форм обучения [24]. Такой же точки зрения придерживаются П.И. Третьяков и И.Б. Сенновский, утверждая, что каждый учащийся достигает поставленной цели благодаря предложенной ему индивидуальной учебной программе, «включающей в себя целевой план действия, банк информации и методическое руководство по достижению поставленных дидактических целей» [43, с.31]. Сравнительно глубоко модульную систему обучения разработал П.А. Юцявичене. Согласно его взглядам, общее направление модульного обучения, его цели, содержание и методику организации определяют следующие принципы: модульности, выделение из содержания обучения обособленных элементов, динамичности, действенности и оперативности знаний и их системы, гибкости, осознанной перспективы, разносторонности методического консультирования, паритетности [49]. Анализируя полученные результаты применения модульной системы качестве итогового контроля, О.А. Орчаков и П.Ф. Кубрушко рекомендуют использовать рейтинговую оценку. Надо отметить, что рейтинговая система контроля «красной нитью» проходит практически по всем исследованиям, связанным с применением модульного обучения. Важным фактором в модульном обучении является увеличение числа контрольных точек в ходе изучения той или иной темы, что, с нашей точки зрения, способствует регулярности работы учащихся по освоению программного материала. Этой же цели, как отмечается в ряде исследований, служит и оперативное и гласное отображение результатов, что снижает влияние случайных факторов на итоговый результат. Надо отметить, что материал отдельных модулей может изучаться относительно независимо. Этот вывод сделан на основе анализа опыта модульного обучения в США, когда каждому модулю соответствует глава или раздел учебника.

В понятие «технология» В.М. Монахов вкладывает продуманную модель совместной педагогической деятельности по проектированию, организации и проведению учебного процесса с обеспечением комфортных условий для учащихся и учителей. При этом подчеркивается, что «любая технология должна гарантировать конечный результат» [33, с. 14]. Разработка этой технологии предполагает, кроме оптимального структурирования тем, проектирование технологических карт, в основу содержания которых положены целеполагание, диагностика, домашние задания и коррекция, разработанные на основе определенной логической структуры. В рассматриваемой технологии предусмотрена дифференциация оценивания степени усвоения учебного материала по сложности заданий на три уровня. Первый уровень - это уровень соответствия знаний государственному требованию стандарта «удовлетворительно». Второй и третий уровни предусматривают в меньшей или большей степени расширение и углубление требований стандарта и аттестуются отметками соответственно «хорошо» и «отлично». Подводя итоги проведенного обзорного анализа по проблеме модульного обучения как средства обучения школьников, можно сделать следующий вывод. Модульное обучение представляет собой, совокупность педагогических условий, определяющих подбор и компоновку на модульной основе содержания, форм, методов и средств обучения, обеспечивающих комфортные субъект-субъектные отношения педагога и студентов в процессе достижения эффективного результата в усвоении научных знаний. В связи с этим под модулем понимается относительно самостоятельная целостная организационно-содержательная единица учебной программы дисциплины, отражающую сущность обучения. Модуль состоит из компонентов, которые являются структурными элементами модульной программы дисциплины и предопределяются ее содержанием. Цель модуля как структурной единицы рабочей программы дисциплины состоит в создании условий для усвоения учащимися научных знаний, умений и навыков. Таким образом, модульное обучение, дает возможность сформулировать ряд задач, которые необходимо решить преподавателю с целью гармоничного развития личности школьников:

- стимулировать учебно-познавательную активность учащихся, организовать познавательную деятельность по овладению научными знаниями, умениями и навыками;

- создать условия для развития мышления, памяти, творческих способностей студентов с учетом индивидуальных особенностей личности [20, 36].

Теоретический анализ литературы по проблеме данного исследования показал, что применение модульного обучения, как одного из вариантов инновационных технологий основано на гуманистических идеях и принципах, посредством которых реализуется личностно-ориентированный подход к профессиональной подготовке специалистов.

1.2 СУЩНОСТЬ МОДУЛЬНОГО ОБУЧЕНИЯ

Основная задача школы состоит в том, чтобы создать такую систему обучения, которая бы обеспечивала образовательные потребности каждого ученика в соответствии с его склонностями, интересами и возможностями. Для достижения этой цели необходимо кардинально поменять парадигму ученика и учителя в учебном процессе. Новая парадигма состоит в том, что ученик должен учиться сам, а учитель - осуществлять мотивационное управление его учением, т.е. мотивировать, организовывать, консультировать, контролировать. Для решения этой задачи требуется такая технология, которая бы обеспечила ученику развитие его самостоятельности, коллективизма, умений осуществлять самоуправление учебно-познавательной деятельностью. Такой технологией является модульное обучение.

Прежде чем дать определение модульной технологии рассмотрим, что вообще понимается под педагогической технологией. В настоящее время понятие педагогической технологии прочно вошло в педагогический лексикон. Но в его понимании и употреблении существуют большие разночтения. Г.К.Селевко [39] приводит несколько определений педагогической технологии.

· Технология - это совокупность приемов, применяемых в каком-либо деле, мастерстве, искусстве (толковый словарь).

· Педагогическая технология - совокупность психолого-педагогических установок, определяющих специальный набор и компоновку форм, методов, способов, приемов обучения, воспитательных средств; она есть организационно-методический инструментарий педагогического процесса (Б.Т.Лихачев).

· Педагогическая технология - это содержательная техника реализации учебного процесса (В.П.Беспалько).

· Педагогическая технология - это описание процесса достижения планируемых результатов обучения (И.П.Волков).

· Технология - это искусство, мастерство, умение, совокупность методов обработки, изменения состояния (В.М.Шепель).

· Технология обучения - это составная процессуальная часть дидактической системы (М.Чошанов).

· Педагогическая технология - это продуманная во всех деталях модель совместной педагогической деятельности по проектированию, организации и проведению учебного процесса с безусловным обеспечением комфортных условий для учащихся и учителя (В.М. Монахов).

· Педагогическая технология - это системный подход создания, применения и определения всего процесса преподавания и усвоения знаний с учетом технических и человеческих ресурсов и их взаимодействия, ставящий своей задачей оптимизацию форм образования (ЮНЕСКО).

· Педагогическая технология означает системную совокупность и порядок функционирования всех личностных, инструментальных и методологических средств, используемых для достижения педагогических целей (М.В. Кларин) [3].

А вот какое определение педагогической технологии дает Д.Г. Левитес в [25]. Педагогическая технология:

· рациональная организация деятельности и ее оснастка;

· последовательность операций, позволяющая получить результат с наименьшими затратами;

· педагогическая категория, которая позволяет вести обсуждение педагогических проблем на методологическом уровне;

· внедрение в педагогику системного способа мышления, который позволяет сделать учебный процесс полностью управляемым;

· упорядоченная система действий, выполнение которых приводит к гарантированному достижению педагогических целей.

Перейдем к рассмотрению модульной технологии.

Модульное обучение возникло как альтернатива традиционному. Оно базируется на деятельностном подходе к обучению. Только то учебное содержание осознанно и прочно усваивается учеником, которое становится предметом его активных действий. При этом учитель должен организовать не эпизодические действия, а систему. Разрабатывая задания для учащихся, учитель должен ориентировать их на цель, организовать действия по ее мотивации, включить в задания самоконтроль и самооценку - все это обеспечит организацию учения как самоуправляемой деятельности.

Оно опирается на теорию развивающего обучения, основы которой заложены Л.С. Выгодским. Именно он выявил две зоны развития: ближайшего и актуального. Если ученик выполняет задание с дозированной помощью других, то он находится в зоне своего ближайшего развития. Под дозированной помощью имеется в виду подбадривание ученика, напоминание, помощь в начале выполнения задания и т. д. В результате то, что сегодня он делает с помощью других, завтра он сможет сделать сам. Тогда же цикл ближайшего развития завершается, и ученик переходит в зону актуального развития [17].

Реализация теории развивающего обучения требует, чтобы ученик постоянно учился в зоне ближайшего развития. В модульном обучении эта теория осуществляется с помощью: дифференциации содержания и дозы помощи ученику; организации учебной деятельности в равных формах: индивидуальной, парной, групповой, в парах сменного состава.

Модульное обучение очень многое использует из программированного обучения. Во-первых, четкие действия каждого ученика в определенной логике; во-вторых, активность и самостоятельность действий; в-третьих, индивидуальный темп; в-четвертых, постоянное подкрепление, которое осуществляется путем сверки хода и результатов деятельности, самоконтроля и взаимоконтроля.

Теория модульного обучения была бы неполной, если бы она не опиралась на рефлексивный подход. Рефлексия - процесс самооценки себя, своих действий, причин успеха и неудач, своего состояния с учетом оценки других. Учитель, составляя задания в модуле, должен начать с цели и завершить контролем и рефлексией каждого ученика по направлениям «я - мы - дело». «Я» - как я себя чувствовал в процессе учения, было ли мне комфортно, с каким настроем я работал, доволен ли я собой. «Мы» - насколько мне было комфортно работать в малой группе, помогал ли я товарищам, или они мне помогали, чего было больше, считаю ли я себя авторитетом в этом вопросе, какие у меня были затруднения в общении с группой. «Дело» - я достиг цели учения, мне этот материал нужен для дальнейшей учебы или на практике, он просто интересен, как мне преодолеть свои затруднения [19].

Модульное обучение является интегрированной педагогической технологией, впитавшей в себя возможности многих научных и практических наработок. Оно может быть использовано как технология, на которую можно перевести весь учебный предмет целиком. Однако целесообразно включать модульные уроки в традиционную систему обучения, усиливая тем самым ее развивающий эффект. Именно оно интегрирует все то прогрессивное, что накоплено в педагогической теории и практике. Из теории поэтапного формирования умственных действий используется самая ее суть - ориентировочная основа деятельности. Кибернетический подход обогатил модульное обучение идеей гибкого управления деятельностью учащихся, переходящего в самоуправление. Накопленные обобщения теории и практики дифференциации, оптимизации обучения, проблемности - все это интегрируется в основах модульного обучения, в принципах и правилах его построения, отборе методов и форм осуществления процесса обучения [47, 53].

Отечественная и зарубежная практика показывает перспективность модульного обучения, которое характеризуется опережающим изучением теоретического материала укрупненными блоками-модулями, алгоритмизацией учебной деятельности, завершенностью и согласованностью циклов познания и других циклов деятельности.

Т.И. Шамова [52] выделяет следующие отличия модульного обучения от других систем обучения:

· содержание обучения представляется в законченных, самостоятельных комплексах - модулях, одновременно являющихся банком информации и методическим руководством по ее усвоению. Дидактическая цель формулируется для учащегося и содержит в себе указание не только на объем изучаемого содержания, но и на уровень его усвоения;

· взаимодействие педагога и обучающегося в учебном процессе осуществляется на принципиально иной основе - с помощью модулей обеспечивается осознанное самостоятельное достижение обучающимися определенного уровня предварительного подготовленности к каждой педагогической встрече;

· сама суть модульного обучения требует неизбежного соблюдения паритетных, субъект-субъектных взаимоотношений между педагогом и обучающимся в учебном процессе.

Поскольку модульное обучение в качестве одной из основных целей преследует формирование у ученика навыков самообразования. весь процесс строится на основе осознанного целеполагания с иерархией ближних (знания, умения и навыки), средних (общеучебные умения и навыки) и перспективных (развитие способностей личности) целей. Осознанность учебной деятельности переводит учителя из режима информирования в режим консультирования и управления. Ведущая роль его сохраняется, но в рамках субъект-субъектных отношений в системе “учитель-ученик”. Данный метод обеспечивает возможность выбора обучаемым пути движения внутри модуля. Учитель освобождается от чисто информационных функций, делегирует модульной программе некоторые функции управления, которые становятся функциями самоуправления.

Модульные программы и модули строятся с целевым назначением информационного материала, с сочетанием комплексных, интегративных и частных дидактических целей, при полноте учебного материала, относительной самостоятельности элементов в модуле, с реализацией обратной связи, при оптимальной передаче информации и методического обеспечения.

Критерии содержания модулей предполагают диагностичность целей, адекватность учебного материала целям, организацию познавательной деятельности и перспективное использование ее результатов, иерархичность структуры опыта и открытость диагностики [37].

Модульная система организации учебно-воспитательного процесса, ориентируясь на развитие ребенка, предполагает в начале каждого цикла деятельности обязательность мотивационного этапа. Взаимосвязанные, они обеспечивают переход от знаний к умениям. Многократно повторяющаяся учебная деятельность учащихся в ходе самостоятельной работы на адекватном и индивидуализированном уровне сложности и трудности учебного материала переводит умения в навыки. На всех этапах учитель выступает как организатор и руководитель процесса, а ученик выполняет роль самостоятельного исследователя последовательности проблем, разрешение которых приводит к заранее определенной структуре знаний, умений и навыков [51].

В статье [18] указывается, что модульное обучение представляет собой переход от информационно-рецептурных систем обучения к развивающему самоуправляемому обучению.

Сущность модульного обучения заключается в том, что ученик самостоятельно (или с помощью учителя) достигает конкретных целей учебно - познавательной деятельности в процессе работы с модулем. Ученик имеет у себя инструкцию, в которой определены:

· Цель усвоения модуля.

· Где найти учебный материал?

· Как овладеть им (выучить, составить конспект, решить задачу и т.д.)?

· Как проверить правильность выполненной задачи? Контроль (тесты, письменные работы, сообщения и т.д.) определяет степень усвоения учебного материала.

Таким образом, модуль выступает средством модульного обучения, т.к. в него входит: 1) целевой план действий; 2) банк информации; 3) методическое руководство по достижению дидактических целей.

В модульном обучении существует специально созданная учебная программа, состоящая из целевого плана действий, банка информации и методического руководства по реализации дидактических целей. Модульное обучение предоставляет обучающемуся возможность самостоятельно работать с этой программой, используя ее полностью или заменяя отдельные элементы в соответствии с потребностями обучаемого.

Целевой план действий - это последовательность освоения отдельных учебных элементов, модулей внутри целостной модульной программы, позволяющий спланировать достижение результата. Совокупность содержащейся в модулях информации, представленной различными средствами ее передачи, называется информационным банком. Под методическим руководством в модульном обучении понимаются варианты путей освоения учебного материала, включающие рекомендации по использованию различных форм, методов и способов учения, а также тесты для проверки его эффективности.

Модульный подход имеет массу преимуществ по сравнению с традиционным учебным процессом как для учащихся, так и для преподавателей.

Преимущества для учеников:

· учащиеся точно знают, что они должны усвоить, в каком объеме и что должны уметь после изучения модуля;

· учащиеся могут самостоятельно планировать свое время, эффективно использовать свои способности;

· учебный процесс сконцентрирован на ученике, а не на преподавателе.

Преимущества для учителей:

· учитель имеет возможность концентрировать свое внимание на индивидуальных проблемах обучающихся;

· учитель своевременно идентифицирует проблемы в обучении;

· учитель выполняет творческую работу, заключающуюся в стимулировании мышления учащихся, активизации их внимания, мышления и памяти, активизации нужных реакций, оказании всевозможной помощи учащимся.

Основные трудности для учащихся:

· ученики должны владеть самодисциплиной, чтобы добиваться поставленных целей;

· ученики должны выполнять большой объем самостоятельной работы;

· ученики сами несут ответственность за свое обучение.

Основные трудности для учителей:

· учителям трудно изменить привычный образ мыслей и действий, так как им необходимо отказаться от центральной роли в учебном процессе и стать помощником ученика в достижении поставленных целей;

· учителю необходимо изменить структуру и стиль своей работы для обеспечения активной, самостоятельной, целеустремленной и результативной работы каждого ученика.

Существуют определенные трудности в использовании модульной технологии. Некоторые учащиеся, не приученные к самостоятельности, не умеющие планировать свое рабочее время, объективно себя оценивать, могут испытывать на модульных уроках определенный психологический дискомфорт. Задача учителя как раз и заключается в том, чтобы помочь таким ученикам путем индивидуального консультирования, дозированной индивидуальной помощи. Уже сегодня можно говорить, что модульная система обучения дает учителю профессиональный рост, возможность самореализации. Но следует иметь в виду, что эта система обучения требует от учителя большой предварительной работы, а от ученика напряженного труда [41,44].

1.3 ПРИНЦИПЫ МОДУЛЬНОГО ОБУЧЕНИЯ И УСЛОВИЯ ИХ РЕАЛИЗАЦИИ

Технология модульного обучения включает в себя модульную программу, состоящую из отдельных частей учебного материала - модулей, принципов модульного обучения, методов обучения и контроля. Остановимся на принципах модульного обучения и педагогических условиях их реализации.

1) Принцип модульности. Сущность данного принципа формулируется из основной идеи модульного обучения - использования модулей как основного средства усвоения учащимися дозы учебной информации. Принцип модульности является основой индивидуализации обучения, поскольку обеспечивает вариативность содержания и способов его усвоения в зависимости от уровня базовой подготовленности учащихся.

Педагогические условия реализации принципа модульности:

· учебная информация в модуле должна соответствовать требованиям программ общеобразовательной школы;

· учебная информация, выделенная в модуль, должна представлять собой достаточное описание усваиваемой модели;

· каждый последующий модуль, предложенный для изучения, не должен опираться информационно на предыдущий;

· с целью экономии бюджета времени необходимо исключить повторное включение информации в модули, если эта информация не является базой для освоения модели;

· для оптимального освоения модели во временном отношении и по прочности фиксации знаний и умений следует использовать различные формы и методы обучения в оригинальных сочетаниях;

· необходимо предоставить учащемуся право выбора способов освоения модели с учетом его индивидуальных особенностей.

2) Принцип структурирования содержания обучения предполагает деление учебного материала в рамках модуля на структурные элементы, перед каждым из которых становится вполне определенная деятельностная дидактическая цель, а содержание обучения представляется в объеме, обеспечивающим ее достижение.

Педагогические условия реализации принципа структурирования содержания обучения:

· интегрирующая дидактическая цель (цель конкретного модуля) должна отражать содержание единицы функциональной деятельности учащегося;

· в структуре интегрирующей цели необходимо выделить ряд частных дидактических целей, определяющих содержание учебных элементов;

· каждый учебный элемент должен соотноситься с определенным функциональным элементом деятельности;

· содержание учебных элементов, составляющих модуль, должно полностью обеспечивать достижение всех частных дидактических целей.

3) Принцип гибкости. Гибкость, как стержневая характеристика модульного обучения означает способность оперативно реагировать и мобильно адаптироваться к изменяющимся условиям.

Педагогические условия реализации принципа гибкости:

· непрерывное диагностирование деятельности в реальных условиях с целью определения оптимального набора модуля и содержательного наполнения;

· диагностирование базовой подготовленности обучаемых в начале каждого учебного курса для разработки индивидуальных модульных программ.

4) Принцип оперативности предполагает необходимость организации системы оперативной обратной связи с целью своевременного контроля, коррекции и оценки успешности изучения модуля.

Педагогические условия реализации принципа оперативности:

· определение для каждого обучающегося наиболее приемлемого комплекса средств (печатных материалов, аудио- и видеокассет, компьютерных программ и баз данных) для работы по индивидуальной модульной программе;

· обеспечение оперативного контроля качества изучения модуля посредством проведения начального (входного), промежуточного (текущего) и заключительного (выходного) тестирования.

5) Принцип паритетности. Одним из факторов, определяющих успешность в изучении модуля, является уровень субъект-субъектных отношений между педагогом и учащимся. В центре педагогического процесса все чаще оказывается не отношения к объекту, а отношения людей друг к другу по поводу объекта их деятельности. В отличие от классической схемы «педагог - передатчик» - «учащийся - получатель», отводящей учащемуся роль пассивного участника учебного процесса, технология модульного обучения предполагает сотрудничество между педагогом, выступающим в роли консультанта-координатора и учащимся, самостоятельно усваивающим учебный материал.

Педагогические условия реализации принципа паритетности:

· комплексное методическое обеспечение каждого модуля, позволяющие учащимся самостоятельно и творчески выполнить все задания в соответствии с выбранным темпом;

· регулярные консультации в ходе работы учащегося по модулю;

· обеспечение в рамках модульной программы возможности самостоятельного выбора самим учащимся собственной образовательной «траектории» сообразно с его индивидуальными особенностями и образовательными запросами.

Также не менее значимы принципы динамичности, деятельного подхода, осознанной перспективы и разностороннего методического консультирования.

Эффективное применение технологии модульного обучения возможно лишь при условии овладения учителем принципами данного обучения и наличием педагогических условий их реализации.

Важнейшей целью для формирования и развития знаний о картине вселенского мира, представленной биосоциотехническими системами, является создание для обучающихся адаптивного развивающего образовательного пространства. В процессе его проектирования необходимо решить две задачи. Во-первых, задачу системности и объема информации. Во-вторых, задачу применения оптимальной педагогической технологии, основанной на сотрудничестве учителя и ученика.

Практика и передовой опыт убеждают, что только структурированное и дозированное по объему содержание школьного курса наряду с развивающими рефлексивными педагогическими технологиями являются гарантами саморазвития личности. В основу отбора содержания обучения положен принцип системности. Поэтому ведущим является процесс познания человеком мира как системы систем. Отбор учебного материала надо начинать «сверху» - от современной картины мира, которая должна быть сформирована в сознании ученика к моменту окончания школы. Важную роль играют глубина и степень детализации изучаемого материала. Приоритет отдается наиболее типичным научным фактам, в которых сущность как бы просвечивает через внешнюю оболочку явлений. Учитываются возрастные и временные возможности учащихся. Материал изучается в той же самой последовательности, что и отбирается, и обратно той, в которой шло изучение материала наукой [21, 54].

1.4 ОРГАНИЗАЦИЯ УЧЕБНО-ВОСПИТАТЕЛЬНОГО ПРОЦЕССА ОБУЧЕНИЯ СТЕРЕОМЕТРИИ

Проектируя развивающее образовательное пространство (предмет, профильный класс, школу и т.д.), необходимо организовать среду, которая обеспечила бы ученику, во-первых, понимание законов функционирования и развития систем различных видов и, во-вторых, обучение деятельности по законам, закономерностям и правилам. Осуществить это можно посредством алгоритмических предписаний и алгоритмов учебной деятельности и обучающих программ.

Программа учебной дисциплины состоит из системы модулей. Их число определяется целями обучения и объемом учебного материала. Модульный подход позволяет структурировать модульные программы по циклам дисциплин и отдельным предметам.

В программу учебного модуля отбираются учебные элементы, которые, будучи представлены в целом и взаимосвязи, образуют логическую структуру. Исходный учебный элемент дифференцируется в производных элементах. Логическая структура содержания предмета ограничена по числу градаций и производных учебных элементов в зависимости от целей и задач подготовки учащихся, выявленных из анализа их будущей деятельности [42].

Процесс конструирования программного содержания идет по следующему алгоритму:

1. Начальное обобщенное представление об объективном мире, законах развития природной и социальной среды.

2. Систематизация, конкретизация и углубление представлений и понятий о функционировании и развитии систем различных видов на основе общих и частных законов.

3. Проектирование и организация практической деятельности учащихся по установлению границ применения законов [10].

Данный путь познания позволяет обеспечить и сохранить в изучаемом содержании его характерные признаки. Только такая сущностная система, запрограммированная в модуле, является основой любой учебной дисциплины. Основываясь на структурировании модульных программ учебных дисциплин по приоритетным целям освоения нового содержания образования, мы вправе говорить о первоочередных курсах, обеспечивающих усвоение учащимися фундаментальных знаний. Только после понимания и осознания сущности развития материального мира как системы можно определить вариации ее проявления в реальном мире, что означает для человека возможность действовать грамотно [54].

Структуры модуля (рис. 1) и рассматриваемой системы адекватны, что позволяет познавать мир через его отраженную картину.

134

Рисунок 1. Структура учебного модуля

Посредством модульной организации учебных занятий учитель передает дозированный учебный материал, ученик самостоятельно осознает, какую информацию и для чего он осваивает по предлагаемому алгоритмическому предписанию.

Вся совокупность действий обучающего и обучаемого, которая приводит последнего к усвоению определенной порции содержания образования с заданными показателями, представляет собой цикл обучения. Согласно точке зрения Н.Ф.Талызиной любой цикл обучения включает[41]:

· цель (для чего обучать)

· содержание (чему обучать)

· процесс усвоения (как обучать).

Процесс усвоения, построенный целиком на деятельности учащихся, при модульной организации обеспечивает глубину и прочность усвоения за счёт раскрытия существенных сторон нового материала и различных форм материализации новых знаний [56]. Очень важно строить процесс обучения в согласии с процессом усвоения:

Этапы обучения.
Этапы усвоения.
Объяснение нового материала.
Проецирование новых знаний на определённые виды познавательной деятельности (показывать использование знаний при решении задач, соответствующих целям обучения)
Формирование знаний и умений.
Изменение качественных состояний в процессе формирования (изменение формы знаний и умений от материализованной до умственной, уровня обобщённости и самостоятельности)

Цикл модульного обучения взаимосвязан с проблемной ситуацией (задачей). Его можно представить так:

Этапы обучения.
Результаты этапов.
Предварительный, первый этапы.
Создаётся мотивация, формируется сознательный интерес субъекта.
Этап объяснения.
Выделяется состав необходимой деятельности.
Этап усвоения знаний.
Овладение видами деятельности.

Структурируя содержание учебного материала на модульной основе, учитель и ученик осознают предмет обсуждения для познания нового. Первостепенная задача учителя в этом нетрадиционном подходе - использование всех нетрадиционных каналов, показ различных точек зрения, явлений и процессов. Для ученика важной представляется роль по осмыслению информации и определению ее значения для дальнейшего практического применения. Модульное обучение необходимо рассматривать в контексте новой организации учебно-воспитательного процесса, каждого учебного занятия.

Большой временной разрыв между отдельными занятиями, вызванный низкой регулярностью, или часточностью, геометрии в учебном плане, в сочетании с микронормированностью учебных программ и частных методик делает желание профессионально и творчески работающего педагога заниматься формированием у учащихся целостных структур познания и деятельности в зоне их ближайшего развития в актуальном времени маловероятным.

Дидактическая технология на начальном этапе дает общетеоретическую схему предмета, лишь постепенно вводя в частности и детали. Из двух возможных путей обучения предпочтение следует отдать схеме перехода от всеобщего к общему и единичному, т.е. схеме, противоположной естественному историческому пути развития науки. Совершенно отличная по структуре схема перехода от единичного к общему и всеобщему имеет принципиально иную методику реализации в дидактическом процессе.

Широко используемая сегодня в общеобразовательной школе схема движения от единичного через неоднократные обобщения и систематизации учебного материала предполагает многократное обращение к повторам решения большого количества задач, заданий и упражнений одного и того же класса, интуитивное нащупывание алгоритмов их решения. В лучшем случае учебная работа строится на использовании набора алгоритмов действий при решении задач одного и того же типа. Такой метод не рассчитан на выявление доминантных связей внутри учебного процесса или между курсами.

Продвижение по учебной схеме от всеобщего через общее к единичному позволяет учителю формировать у учащихся целостную картину предъявляемого материала, подавать его сравнительно большими блоками с опережающим изучением теории, последовательно вводить все более подробную детализацию на основе ранее сообщенной структуры понятий [6]. Дидактический процесс, построенный в соответствии с описанной схемой, потребует пересмотра содержания учебного материала. Цениться будут не отдельные факты, а целостная система базисных понятий и алгоритмов деятельности, достаточная для обеспечения решения одной из основных задач школы - подготовки учащихся к дальнейшему самообразованию. Учебная программа представляет обой совокупность двух частей: стабильного ядра и вариативного дополнения к нему.

Общая структура модуля такова:

№ этапа
Содержание этапа
Основные дидактические задачи этапа
1

Открытие модуля (Входной контроль, постановка проблемы. Сообщение содержания модуля, его основных знаний и умений, тематики творческих заданий.)

Программированная лекция

· Подготовка уч-ся к работе над усвоением новых знаний.

· Обеспечение мотивации уч-ся.

· Обеспечение восприятия, осмысливания и первичного запоминания знаний и способов действий.
2
Серия уроков-семинаров репродуктивного характера, где рассматриваются теоретические вопросы и решаются задачи обязательного уровня.

· Установление правильности и осознанности нового материала.

· Выявление пробелов и коррекции знаний.

· Обеспечение усвоения новых знаний, применение их в стандартных ситуациях.

· Формирование целостной системы ведущих знаний по теме.
3
Серия уроков-практикумов, на которых решаются задачи разного уровня, взятые из творческих работ уч-ся и из общего списка задач модуля.

· Обеспечение усвоения способов действий в стандартных и измененных условиях

· Коррекция знаний и способов действий

· Формирование целостной системы способов действий.
4
Контроль в форме зачета или контрольной работы
· Выявление качества и уровня овладения знаниями и способами действий
5
Резюме (общение модуля)

· Коррекция знаний и умений

· Систематизация знаний

· Выделение мировоззренческих идей. Определение перспективы.

С помощью учебных модулей обеспечивается осознанное самостоятельное достижение учащимися определенного уровня предварительной подготовленности к уроку.

Если в качестве временной единицы учебного процесса вместо урока выбрать учебную неделю (декаду), а вместо единицы учебного материала - один, два или несколько параграфов - взять учебную тему, то появится реальная возможность основную часть учебного процесса посвятить групповой или даже индивидуальной работе [2].

Относительно уровня сложности и трудности изучаемой темы всех учащихся внутри класса или параллели целесообразно разделить на три группы или соответственно на три потока. Формирование групп (потоков) проводится на основе итогов диагностики степени обучаемости и обученности учащихся, итогов их учебной деятельности, с учетом мнения родителей и выбора-самооценки школьников. Степень обученности диагностируется поуровневым тестированием по учебным предметам.

Если учебный материал представляет собой элемент общего развития учащегося, далек от области его дальнейшей профессиональной деятельности и будет использоваться в минимальном объеме, то такой ученик будет отнесен к первой группе. Для этой категории важна общекультурная направленность предмета, а не набор отдельных навыков. Вторую группу составляют лица, для которых данный учебный предмет будет важным инструментом в их профессиональной деятельности. Для таких ребят необходимо освоение целостной системы знаний и навыков. В третью группу войдут учащиеся, для которых учебная дисциплина будет основой их профессиональной деятельности. Ученики третьей группы должны освоить предмет на самом высокой, творческом уровне сложности.

Учитывая принадлежность школьников к одной из трех групп и соответствующий уровень сложности учебного материала, можно конкретно сформулировать требования учебной программы для текущей диагностики знаний, умений и навыков. Общая картина требований представляется нам в таблице 1 [50].

Реализация поуровневого обучения с дифференциацией групп учащихся обеспечивается соответствующей педагогической технологией на основе индивидуализации учебного труда с использованием современных дидактических приемов.

Обучаемость - восприимчивость к обучению. Обучаемость одного класса по конкретному предмету определяют несколько учителей этого класса для того, чтобы результат был более объективным.

Таблица 1

Уровни учебной деятельности

Уровни дифференциации учебной деятельности
Требования к уровням дифференциации учебной деятельности
1. Общекультурный
Понимание основных, ведущих идей курса, умение их объяснять, умение применять теоретические знания в практической ситуации
2. Прикладной
Глубокое знание системы понятий, умение решать проблемные ситуации в рамках курса
3. Творческий
Умение решать проблемы в рамках курса и смежных курсов посредством самостоятельной постановки цели и выбора программы действий

Методики определения уровня обучаемости и обученности представлены в Приложении 4. Тест на определение обученности рекомендуется составлять в соответствии с характеристиками каждого уровня. Построение модульного обучения с учетом уровневой и профильной дифференциации значительно повышает его эффективность, создает для учащихся адаптивную их возможностям и способностям образовательную среду [46].

1.5 МОДУЛЬНОЕ СТРУКТУРИРОВАНИЕ И ОРГАНИЗАЦИЯ УЧЕБНЫХ ЗАНЯТИЙ ПО СТЕРЕОМЕТРИИ

Рассмотрим более детально организацию и конструирование учебно-воспитательного процесса и учебной деятельности обучения стереометрии с позиций теории модульного подхода. Известно, что хорошие результаты достигаются там, где процесс организован как целостная система.

Помня о том, что процесс обучения должен носить воспитательный и развивающий характер, следует отметить необходимость выделения по целям работы блоков развития, воспитания и обучения.

Ведущую роль играет блок целей развития, которые достигаются через реализацию блоков целей воспитания и обучения. Поэтому они выступают как подцели по отношению к целям развития.

Все цели воспитания и обучения определяют структуру и содержание процессов воспитания и обучения, они образуют два блока целей [4].

Таблица 2

Блоки развития, воспитания и обучения

Блоки целей
развития
воспитания
обучения
Средняя (полная) ступень школы
Развитие способностей личности. Формирование научного мировоззрения и нравственно-духовной культуры
Формирование мотивации к профессиональному образованию. Формирование целостности и гуманитарной выраженности менталитета личности
Формирование системы специальных знаний, умений и навыков на твор-ческом уровне профильного и углубленного характера. Формирование системы навыков самообразования. Формирование функцио-нальной грамотности

Таблица 3

Блоки целей воспитания и обучения

Блок целей воспитания
Блок целей обучения
Формирование убеждений
Формирование системы знаний
Формирование системы социальных умений и навыков
Формирование системы специальных и общеучебных умений и навыков
Формирование направленности личности
Формирование структуры опыта
Формирование структуры социальных позиций
Организация деятельности других лиц
Формирование структуры социальных ролей
Самоорганизация деятельности
Формирование структуры деятельности
Рефлексия деятельности других лиц
Ценностная ориентация личности
Рефлексия собственной деятельности

Система воспитательной работы, с одной стороны выстраивается как продолжение учебного процесса и завершает циклы познания, с другой - содержит циклы других видов деятельности, относительно независимые от учебного процесса. Завершенность циклов познания в учебном процессе достигается их переводом в циклы других видов деятельности в воспитательном процессе. Причем циклы деятельности учащихся имеют два последовательно протекающих варианта: деятельности на уровне участника и деятельности на уровне организатора по отношению к ученикам предыдущих классов. При такой организации учебная и внеучебная части единого педагогического процесса органически дополняют друг друга. Сформированные понятия на основе алгоритмов действий переводятся в умения и доводятся до автоматизма на уровне навыков. Создается непрерывная во времени и по возрастным группам учащихся последовательность завершенных циклов познания других видов деятельности.

Следует отметить обязательность структурирования последовательности циклов таким образом, чтобы они одновременно начинались и заканчивались в виде единого блока циклов, а затем сменялись очередным. Упорядоченность следования блоков и циклов позволяет на основе целеполагания и постоянно проводимой диагностики промежуточных и итоговых результатов выстроить иерархию циклов познания и циклов других видов деятельности как целостную технологию. Согласованность и соподчиненность циклов предусматривает проведение одновременно не более трех-четырех [13]. В блоке могут присутствовать циклы познания и циклы других видов деятельности. Однако циклы познания должны быть завершены и опережать по времени циклы других видов деятельности по соответствующим видам, а циклы всех остальных видов деятельности в соответствии с зонами ближайшего развития следуют за циклами познания с учетом доминирующей природосообразной деятельности.

Приведем алгоритмическое предписание управленческих действий учителя и исполнительных и управленческих действий ученика в циклах познания и циклах других видов деятельности.

Диагностируемые цели каждого учебного занятия предопределяют реальный результат учебно-воспитательного процесса. Технология модульного процесса носит вариативный характер и может быть представлена наряду с некоторым стандартом целым рядом самых экзотических моделей. Выбор технологии обучения предоставляется учителю, но более совершенной в данных условиях и при равных конечных результатах будет признана та, для выполнения которой требуется наименьшее время.

Педагогическая технология модульного обучения в первую очередь после целеполагания зависит от своей организации. За исключением начальной стадии, педагогический процесс обеспечивается многократно повторяющейся и варьирующейся самостоятельной работой учащихся, т.е. постоянным и усердным трудом, имеющим конкретные измеряемые параметры [7]. Начальный этап учебно-воспитательного процесса значительно сокращается, если он является мотивационным и содержит мотивационно-проблемные ситуации. С начальным этапом в оптимальной педагогической технологии опытный и творчески работающий учитель связывает процесс «влюбления» учащихся в учебный предмет или учебную тему.

С позиций деятельностного подхода к учебно-воспитательному процессу вербальные, наглядно-иллюстративные методы и формы обучения могут превалировать лишь в начале процесса при формулировании целей, задач, предмета, метода и программы изучения всего курса или отдельной темы по стереометрии. В дальнейшем в ходе модульного учебно-воспитательного процесса каждый ученик включается не только в активное восприятие учебного материала, но и в активное его усвоение. Причем в каждом случае перехода от одного уровня усвоения к другому осуществляется контроль путем диагностики всего объема знаний, умений и навыков, предусмотренных программой.

Негативный конечный результат ученика в рамках учебно-воспитательного процесса, структурированного на основе деятельностного подхода как педагогическая технология, рассматривается как профессиональная ошибка учителя, а не как недобросовестность или неспособность ученика.

Освоение модульной системы предусматривает формирование содержания стереометрии из учебных модулей, состоящих из блоков-модулей содержания теоретического учебного материала и блоков алгоритмических предписаний учебных умений и навыков. Последовательность действий построения учебного модуля представлена в Приложении 1 [5].

Технологическая карта конструирования темы или раздела по стереометрии

№ урока-модуля в разделе…

№ урока-модуля в теме…

Тема урока…

Триединая цель урока (темы)…

Дифференцированная цель урока для ученика…

Что должен знать ученик в конце темы…

Что должен уметь ученик в конце темы…

Формируемая область понимания…

Закрепление и развитие общеучебных умений и навыков…

Воспитание на материалах темы…

Тип урока и примененной педагогической технологии…

Вид контроля: самоконтроль, взаимоконтроль, экспертная оценка

Учебные занятия в рамках модульной системы организации учебно-воспитательного процесса могут быть двух видов. Во-первых, с полной самостоятельной учебной деятельностью ученика по освоению новых знаний (табл. 4,5, приложение 1). Во-вторых, с доминирующей рефлексивной деятельностью ученика по сравнению с обучающей деятельностью учителя. Наряду с технологической картой конструирования темы предлагаем структуры учебного модуля и учебного элемента для самостоятельной работы ученика на уроке.

Таблица 4

Структура модуля (М.1.К.)

Номер учебного элемента (УЭ)
Название учебного элемента
Управление обучением (содержание, формы, методы)
1.К.0
Цели и задачи модуля
Необходимые знания и умения
1.К.1
Учебные элементы
Пояснение к учебному материалу
…………..
Обобщение (резюме)
Источники информации, алгоритмы решения задач
1.К.L
Контроль (самоконтроль и выходной контроль по трем уровням)
Ответы, методы, внутрипредметные связи

Таблица 5

Структура учебного элемента

Порядковый номер в учебном элементе
Учебный материал
Управление обучением (содержание, формы, методы)
0
Цели и задачи УЭ
Необходимые знания и умения
1
Содержание учебного материала
Пояснения к учебному материалу, источники информации
… … …
Обобщение (резюме)
Алгоритмы решения задач, ответы
L
Контроль: вопросы для самоконтроля по трем уровням, выходной контроль по трем уровням
Методы и внутрипредметные связи

В зависимости от темы урока учитель ставит его цель или предлагает сделать это самостоятельно учащимся. Важная задача учителя - донести цель работы до учеников, выработать умение у них ставить перед собой цели в соответствии с задачами урока. Учитель выделяет на основе триединой дидактической цели (ТДЦ) важнейшие задачи урока с учетом особенностей и возможностей классного коллектива. Цель учебной деятельности ученика - это предполагаемый результат, она формируется через эффективность обучения, выраженную в действиях учеников. Формулировка цели начинается со слов: «Учащийся в конце урока (темы) знает, умеет, понимает, объясняет, доказывает, применяет, оценивает, анализирует и пр.»

Содержание учебного материала подбирается в соответствии с темой урока и ТДЦ, но оно должно соответствовать государственному стандарту. В нем реализуются идеи гуманизации и гуманитаризации, связь с жизнью, потребностями общества, личным опытом и интересами школьников. Содержание отражает межпредметные связи с целью формирования целостной научной картины мира. Учитель выделяет важнейшие научные понятия, теоретические положения, закономерности, главное, существенное в содержании обучения. Объем учебного материала, выносимого на урок, должен быть оптимальным, не перегружать учащихся и не быть недостаточным. Необходимо обеспечить связь смысла данного урока с ранее изученным материалом. Выбор методов обучения осуществляется педагогом исходя из ТДЦ и его содержания [23].

Таблица 6

Классификация типов уроков по целям

Цель
Тип урока
Логика построения урока
Восприятие и первичное осознание нового материала
Изучение и первичное закрепление новых знаний
Мотивация > актуализация опорных знаний > восприятие, осмысление и первичное запоминание > проверка усвоения > закрепление > анализ
Вторичное закрепление усвоенных знаний, выработка умений по их применению
Закрепление новых знаний
Мотивация > актуализация ведущих способов и действий > восприятие образца применения знаний > самостоятельное применение знаний в сходной и новой ситуации > самоконтроль и контроль > коррекция
Выработка умений самостоятельно применять знания, осуществлять их перенос в новые условия
Комплексное применение знаний
Мотивация > актуализация комплекса знаний > образец применения знаний > самостоятельное применение в сходной и новой ситуациях > самоконтроль и контроль > коррекция
Усвоение знаний и способов действий в комплексе и системе
Обобщение и систематизация знаний
Мотивация > анализ содержания учебного материала > выделение главного > обобщение и систематизация > установление внутрипредметных и межкурсовых связей, мировоззренческих идей
Определение уровня овладения знаниями и способами деятельности
Проверка, оценка и коррекция знаний
Мотивация > самостоятельное выполнение контрольных заданий > самоконтроль > контроль > анализ > оценка > коррекция

В литературе существует ряд подходов и классификаций методов обучения (МО): И.Я. Лернера, М.Н, Скаткина, Ю.К. Бабанского [1] и др. Классификация их, предложенная Ю.К. Бабанским, является наиболее полной и приемлемой в практической работе.

Таблица 7

Классификация методов обучения (по Ю.К. Бабанскому)

Методы обучения
Основная подгруппа
Отдельные методы обучения
1. Методы стимулирования и мотивации учения
1.1. Методы формирования интереса к учению
1.1. Познавательные игры, учебные дискуссии, методы эмоционального стимулирования
1.2. Методы формирования чувства долга и ответственности в учении
1.2. методы учебного поощрения, порицания, предъявления учебных требований
2. Методы организации и осуществления учебных действий и операций

2.1. Перцептивные методы (передачи и восприятия учебной информации посредством чувств):

словесные

наглядные

аудиовизуальные

практические

Лекция, рассказ, беседа

Иллюстрация, демонстрация

Сочетание словесных и наглядных

Упражнения
2.2. Логические методы (организация и осуществление логических операций)
Индуктивные, дедуктивные, аналогии и пр.
2.3. Гностические методы (организация и осуществление логических операций)
Проблемно-поисковые (проблемное изложение, эвристический, исследовательский), репродуктивные (инструктаж, иллюстрирование, объяснение и практическая тренировка)
2.4. методы самоуправления учебными действиями
Самостоятельная работа
3. Методы контроля и самоконтроля
3.1. методы контроля
Устный, письменный, лабораторный и машинный контроль, самоконтроль

Учителю при выборе на каждом этапе урока методов обучения следует исходить из их сравнительных возможностей, а также использовать рефлексивные: тренинги, деловые и ролевые игры, мозговые штурмы и т.п. [27].

Недельный цикл (рис.2) состоит, как правило, из трех этапов.

134

Рисунок 2. Недельный цикл учебной деятельности

Первый этап обычно представляет собой школьную лекцию, построенную с учетом возрастных особенностей учащихся 10-11 классов и содержащую изложение предмета, метода и порядка учебных действий в виде блоков. Главная задача лекции - вызвать интерес к материалу, возбудить творческую мысль, а не свести ее к сообщению готовых научных истин, которые следует понять и запомнить. В начале второго этапа проводится диагностика усвоения теоретических понятий, поскольку вся педагогическая технология модульного обучения строится на опережающем изучении теоретического материала.

Переход ко второму этапу возможен только при 70%-ом по объему усвоении понятий и правил действий с ними, так как он полностью освящен самостоятельной учебной деятельности учащихся различных ее формах. Каждый из них с помощью учителя и родителей определяет необходимый ему уровень сложности усвоения предмета и, выбрав свой, под руководством учителя выполняет программу, заданную на лекции. Учебные элементы, объединенные в логическую структуру учебной темы и представленные технологической картой ее изучения, составляют содержание блока-модуля, который вместе с блоком алгоритмического предписания образует учебный модуль.

Первичное изучение материала осуществляется и на следующих после лекции уроках во время в основном самостоятельной работы учащихся в виде практических, семинарских и других занятий. При всей специфичности выделения главного для каждого предмета вслед за лекцией происходит более детальное изучение материала. Без перегрузки учащихся домашними заданиями должно происходить глубокое и корректное усвоение теоретических понятий в процессе выполнения достаточного числа повторительных упражнений.

Деятельность учителя должна опираться на высокий уровень мотивации учебной деятельности школьников на уроке, начиная с первого, лекционного, занятия в рамках учебной темы. Каждый урок представляет собой не самостоятельную единицу и не элемент множества, а элемент системы уроков. В ней реализуется актуализация опорных знаний, формирование новых понятий и способов действий, применение знаний в упражнениях разного уровня сложности. Лишь при условии владения стратегией и тактикой проведения урока и при видении всей системы уроков, а также перспективных целей обучения модно предвидеть и предупреждать вероятные деформации в учебном процессе [57].

Особый интерес представляет практическая основа технологии модульного обучения - различные методики коллективных способов обучения (КСО). Эти методики в зависимости от целевой направленности уроков могут успешно применяться как на первом этапе при самостоятельной работе над новым, так и на втором - при отработке последующего материала.

Третий этап отводится для итогового диагностирования контроля знаний, умений и навыков учащихся, которые на данный момент педагогического процесса представляют реальный конечный результат достижения целей цикла. От итоговой диагностики могут быть освобождены те, кто стабильно показывает высокие результаты при проведении текущей диагностики.

Ведущая роль итогового контроля позволяет ликвидировать ежедневную многопредметность, повысить значимость знания теории, вовлечь учащихся в самостоятельную работу по повторению учебного материала. Контроль всей системы знаний можно вести с высокой вероятностью по вопросам с наибольшим диагностическим весом [29].

Модульная система организации учебно-воспитательного процесса построена на основе психологически корректных режимов функционирования внимания, памяти, мыследеятельности, гуманизации содержания обучения и педагогических взаимодействий, реконструкции учебно-воспитательного процесса с позиций целостности, формирования целевых психолого-педагогических программ многолетнего типа с иерархией этапов, системы деятельности школьников, усиления гуманистического, мировоззренческого, эстетического и духовно-нравственного начал содержания обучения и воспитания. Модульная система организации согласуется с философскими, общенаучными, психологическими и социально-психологическими принципами построения педагогических технологий.

Данная технология показывает, что традиционные дидактические подходы менее эффективны в отношении усвоения учебного материала. В модульной системе активный процесс обучения состоит из таких важных этапов, как: принятие цели учеником; подготовка к восприятию нового; практическая учебная деятельность; анализ содержания, построение доказательств; подведение итогов учения, оценка; постановка новых целей. Главное достоинство модульной системы заключается в возможности плавного перехода от существующей организации учебно-воспитательного процесса, без ее разрушений и нежелательных деформаций в ней, к новым моделям педагогической технологии.

В качестве конечных результатов учебно-воспитательного процесса обучения стереометрии модульная система предполагает развитие познавательных, социальных, коммуникативных и профессионально направленных способностей личности [31].

ВЫВОДЫ ПО ПЕРВОЙ ГЛАВЕ

1. Модульное обучение зародилось в конце 60-х годов. В его основу положено понятие «модуль». Модуль - это логически завершенная часть учебного материала. Модульное обучение отличается от других систем обучения тем, что содержание представляется в законченных самостоятельных блоках, меняется форма общения ученика и учителя, ученик работает максимум времени самостоятельно, а также тем, что наличие модулей позволяет учителю индивидуализировать работу с отдельными учениками.

2. Внедряемые в практику новые педагогические технологии обучения, модульной организации учебного процесса позволяют модернизировать традиционные методы обучения. Положительная роль модульного обучения связана с осознанностью перспективы обучения каждым учеником.

3. Сущность модульного обучения заключается в том, что обучающийся более самостоятельно может работать с предложенной ему индивидуальной программой, включающей в себя целевой план действий, банк информации и методическое руководство по достижению поставленных дидактических целей.

4. Выделяют следующие принципы модульного обучения: принцип модульности, принцип структурирования содержания обучения, принцип гибкости, принцип оперативности, принцип паритетности, принцип динамичности, принцип деятельного подхода, принцип осознанной перспективы и принцип разностороннего методического консультирования.

5. Программа учебной дисциплины состоит из системы модулей. В программу учебного модуля отбираются учебные элементы, которые, будучи представлены в целом и взаимосвязи, образуют логическую структуру.

6. Модуль имеет следующую структуру: открытие модуля (обычно в виде лекции), серия уроков-семинаров, серия уроков-практикумов, контроль в форме зачета или контрольной работы и обобщение модуля. Относительно уровня сложности и трудности изучаемой темы всех учащихся внутри класса или параллели целесообразно разделить на три группы.

7. Освоение модульной системы предусматривает формирование содержания стереометрии из учебных модулей, состоящих из блоков-модулей содержания теоретического учебного материала и блоков алгоритмических предписаний учебных умений и навыков.

8. Главное достоинство модульной системы заключается в возможности плавного перехода от существующей организации учебно-воспитательного процесса, без ее разрушений и нежелательных деформаций в ней, к новым моделям педагогической технологии.

Глава 2. РАЗРАБОТКА МОДУЛЬНОЙ СТРУКТУРЫ ПРОЦЕССА ОБУЧЕНИЯ СТЕРЕОМЕТРИИ В СИСТЕМЕ ШКОЛЬНОГО ОБРАЗОВАНИЯ

2.1 МОДЕЛЬ ОБУЧЕНИЯ ШКОЛЬНОМУ КУРСУ СТЕРЕОМЕТРИИ НА МОДУЛЬНОЙ ОСНОВЕ

На основе анализа психолого-педагогической и методической литературы, опыта преподавания стереометрии в школе нами разработана модель обучения школьному курсу стереометрии на модульной основе.

Модель решает следующие задачи:

1. Усиление практической ориентации и прикладной направленности процесса овладения предметом путем достижения оптимального сочетания фундаментальных и практических знаний.

2. Направленность образовательного процесса не только на усвоение знаний, но и на развитие способностей мышления.

3. Изменение методов, форм и средств обучения, направленных на формирование познавательной самостоятельности школьников, а также практических навыков анализа информации, самообучения.

4. Осуществление целенаправленного управления формированием и совершенствованием умений самостоятельной работы школьников.

Перечислим подходы к организации модели:

1. Контекстный (Вербицкий А.А.), позволяющий смоделировать учебный процесс таким образом, чтобы ученик оказался в ситуации самостоятельного целеполагания и целеосуществления.

2. Личностно-ориентированный предполагает опору на активную познавательную деятельность ученика при освоении предметного содержания, организацию процесса обучения в соответствии с его образовательными потребностями и индивидуальными особенностями.

3. Деятельностный направлен на овладение способами получения фундаментальных знаний и умений, погружение в реальную деятельность по овладению соответствующими навыками и технологиями.

4. Модульный определяет высокую степень систематизации знаний и умений в содержании обучения, проблемное изложение материала, акцент на формирование методов деятельности, повышение уровня самостоятельности в решении конкретных проблем.

5. Системный дает ряд преимуществ, основные из которых заключаются в возможности комплексного подхода к формированию системы математических знаний, распознании и анализе явлений и процессов окружающей действительности.

6. Компетентностный ориентирован на освоение умений и обобщенных способов деятельности. Понятие компетентности включает не только когнитивную и операционально-технологическую составляющие, но и мотивационную, этическую, социальную и поведенческую.

Перечислим факторы, влияющие на эффективность повышения геометрической подготовки школьников 10-11-х классов:

1. Мотивационные - формирование потребности в овладении познавательной самостоятельностью как важнейшим фактором принятия адекватных решений в условиях реальной действительности; развитие интереса к знаниям и предмету, стремления познать новое, любопытства и любознательности.

2. Содержательные - реализация возможностей контекстного, системного и личностно-деятельностного подходов в овладении предметными знаниями, познавательными, коммуникативными и рефлексивными умениями. Эти факторы являются необходимыми элементами самого процесса познания.

3. Процессуальные - овладение общими методами и приемами учения как инструментами, обеспечивающими интеграцию знаний, их действенность в выборе наиболее приемлемых способов решения задач в учебно-познавательной деятельности. В данную группу включены методы, приемы и способы работы учителя с учениками (дифференцированный и индивидуальный подходы, проблемное и модульное изложение материала, компьютерная поддержка процесса обучения и др.); формы проведения урочных и внеурочных занятий (семинары, конференции, олимпиады, исследовательская и научная работа и др.).

4. Прикладные - реорганизация учебно-познавательной деятельности путем изменения способа учения как важнейшей предпосылки доведения теоретических знаний до уровня их практического применения.

5. Социальные - отношения с родителями и окружающими, влияние средств массовой информации и т.д.

6. Психологические - обусловлены возрастными особенностями старшеклассников (выработка собственных взглядов и убеждений, потребность в самосовершенствовании и др.). К ним относятся факторы личного характера: склонности, способности, интересы, уровень общеобразовательной подготовки, волевые особенности.

2.2 ОРГАНИЗАЦИЯ ВНЕДРЕНИЯ РАЗРАБОТАННОЙ МОДЕЛИ

Проверка эффективности разработанной модели обучения школьному курсу стереометрии на модульной основе осуществлялась с 24 учащимися 10 класса МОУ «Школы №15» города Соликамска в 2007 учебном году. В качестве контрольного класса выступал 10 «А» класс. Внедрение проводилось на уроках геометрии. Целью работы была проверка эффективности разработанной модели обучения школьному курсу стереометрии на основе модульной технологии. Апробирование проводилось в три ступени: констатирующий срез, проведение уроков, контрольный срез. Охарактеризуем каждую ступень. На первой ступени были проведены методики определения уровня обучаемости и обученности (методики представлены в приложении 4) и самостоятельная работа, в ходе которой выявлялись знания и умения учащихся, которыми они обладают на данный момент времени. Вторая ступень работы представляла собой непосредственно уроки. Занятия проводились по схеме:

№ урока-модуля в разделе…

№ урока-модуля в теме…

Тема урока…

Триединая цель урока (темы)…

Дифференцированная цель урока для ученика…

Что должен знать ученик в конце темы…

Что должен уметь ученик в конце темы…

Формируемая область понимания…

Закрепление и развитие общеучебных умений и навыков…

Воспитание на материалах темы…

Тип урока и примененной педагогической технологии…

Вид контроля: самоконтроль, взаимоконтроль, экспертная оценка

Цель первого этапа - проверить уровни обученности и обучаемости (по методикам, указанным в Приложении 2), а также первоначальные уровни сформированности следующих умений и навыков учеников:

1. Владение методами, способами и приемами мыслительной деятельности, а именно умениями:
- анализировать наблюдаемые предметы и явления, выделять в них существенное, главное, отбрасывать второстепенное и находить общее;
- выявлять причинно-следственные связи и отношения объектов, систематизировать факты на новом уровне;
- концентрировать общие положения, отыскивать доказательства, путем абстрагирования и обобщения раскрывать сущность новых понятий;
- видеть проблему и находить несколько способов ее решения с целью выявления наиболее рационального и оригинального;
- ставить цель и определять направления поиска, осуществлять перенос усвоенных знаний и способов деятельности в новые условия и для дальнейшего самообразования;
2. Владение навыками самостоятельного планирования и рациональной организации процесса обучения познавательной деятельности.
3. Наличие познавательной потребности, внутренних установок, побуждающих к самостоятельной деятельности по овладению стереометрией.
Целью второго этапа являлось обучение школьников стереометрии с использованием разработанной модели обучения. На третьем этапе происходила экспериментальная проверка эффективности процесса обучения с использованием разработанной модели обучения.
Первоначально, с учащимися были проведены методики на выявление уровней обученности и обучаемости.
Выявление первоначального уровня сформированности вышеперечисленных умений и навыков происходило следующим образом.
1. Учитель выбирает небольшой по объему новый учебный материал базисного характера на 7-8 минут работы.
Первое следствие аксиом стереометрии.
2. Учитель перед изучением нового повторяет изученный материал, необходимый для усвоения новых знаний.
Сформулируйте аксиомы планиметрии и стереометрии.
3. Учитель объясняет новый материал.
Следствие 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна. (учащиеся записывают формулировку теоремы).
Дано:
Доказать:
Доказательство: Заметим, что теорема содержит два утверждения:
1. О существовании плоскости.
2. О единственности плоскости.
а) Рассмотрим прямую а и не лежащую на ней точку М. Докажем, что через прямую а и точку М проходит плоскость. Отметим на прямой а две точки: P и Q. Точки M, P и Q не лежат на одной прямой, поэтому согласно первой аксиоме через эти точки проходит некоторая плоскость . Так как 2 точки прямой а (P и Q) лежат в одной плоскости , то по второй аксиоме плоскость проходит через прямую а.
б) Единственность плоскости, проходящей через прямую а и точку М, следует из того, что любая плоскость, проходящая через прямую а и точку М, проходит через точки M, P и Q. Следовательно, эта плоскость совпадает с плоскостью, т.к. по первой аксиоме через точки M, P и Q проходит только одна плоскость.
Теорема доказана.
4. Учитель показывает образец применения нового материала в аналогичной и измененной ситуациях.
1. Даны прямые a, b и с, которые пересекают плоскость в точках М, К и Р. Лежат ли прямые a, b и с в одной плоскости? (Нет, если бы прямые a, b и с лежали в одной плоскости, то точки М, К и Р лежали бы на одной прямой).
2. Дана прямая с - линия пересечения плоскостей и . Прямые а и в принадлежат плоскостям и соответственно. Докажите, что прямые а и в не лежат в одной плоскости. (Предположим, что прямые а и в лежат в одной плоскости. Тогда прямая с также принадлежит этой плоскости. Через прямые а и с можно провести единственную плоскость (плоскость ), которой будет принадлежать и прямая в. Противоречие.)
5. Учитель проводит самостоятельную работу среди учащихся.
Задания для самостоятельной работы учащихся
1. Напишите, что вы узнали нового.
2. Ответьте на вопрос по содержанию нового материала
Сколько плоскостей может проходить через прямую и точку, не лежащую на ней?
3. Выполните задания по образцу.
Даны прямая и не принадлежащая ей точка. Докажите, что все прямые, пересекающие данную прямую и проходящие через данную точку, лежат в одной плоскости.
4. Выполните задание в измененной ситуации.
Можно ли через три точки, лежащие на одной прямой, провести две различные плоскости? Объясните ответ.
5. Примените полученные знания в новой ситуации.
В пространстве даны n точек. Сколько прямых можно провести через различные пары этих точек? Сколько плоскостей можно провести через различные тройки этих точек?
Результаты показали, что выполнены все задания у 7 человек, то есть у них третий, очень высокий уровень обучаемости. С четырьмя заданиями справились 9 учеников - у них второй, также высокий уровень обучаемости. Три и менее заданий выполнили 8 учащихся- у них первый уровень.
Степень обученности учащихся (СОУ) рассчитывается по формуле
,
По итогам уровневых контрольных работ получен первый уровень преподавания.
В 10 классе у 24 учащихся по 12 предметам: «5» - у 124, «4» - у 119, «3» - у 43, «2» - у 1.
, или 75 %.

В программу разработанных уроков входило 10 занятий. На первом уроке был проведен констатирующий срез, в котором содержалось шесть заданий, направленных на выявление знаний по стереометрии.
Все задания среза были направлены на выявление сформированности следующих умений:
- анализировать наблюдаемые предметы и явления, выделять в них существенное, главное, отбрасывать второстепенное и находить общее;
- выявлять причинно-следственные связи и отношения объектов, систематизировать факты на новом уровне;
- концентрировать общие положения, отыскивать доказательства, путем абстрагирования и обобщения раскрывать сущность новых понятий;
- видеть проблему и находить несколько способов ее решения с целью выявления наиболее рационального и оригинального;
- осуществлять перенос усвоенных знаний и способов деятельности в новые условия и для дальнейшего самообразования;
Сформированность названных умений являлась критериями эффективности разработанной методики.
Задания среза представлены в Приложении 3.
Первое задание направлено на выявление сформированности умений анализировать наблюдаемые предметы и явления, выделять в них существенное, главное, отбрасывать второстепенное и находить общее. Второе - на выявление причинно-следственных связей и отношений объектов, систематизацию фактов на новом уровне. Третье задание направлено на то, чтобы видеть проблему и находить несколько способов ее решения с целью выявления наиболее рационального и оригинального. Четвертое - на концентрацию общих положений, отыскание доказательства, путем абстрагирования и обобщения раскрытие сущности новых понятий. Пятое и шестое задания направлены на выявление сформированности осуществлять перенос усвоенных знаний и способов деятельности в новые условия и для дальнейшего самообразования. Констатирующий срез показал, что не все рассматриваемые умения сформированы на данном этапе у школьников:
- с первым заданием полностью справились 15 человек, что составляет 62,5%, частично справились 27%, не справились 10,5%;
- во втором задании у 45% учащихся умение определять точку пересечения прямой и плоскости, двух прямых, а также на нахождение прямой пересечения двух плоскостей сформировано полностью, у 40% это умение сформировано частично, а 15% не справились с заданием;
- с третьим заданием 60% полностью справились, 25% справились частично, 15% не справились;
- с четвертым заданием 25% справились, 30% справились частично, 45% не справились;
- с пятым заданием 68% справились полностью, 15% справились частично, 17% не справились.
- с шестым заданием 65% справились полностью, 13% справились частично, 22% не справились.
Отобразим полученные результаты на диаграмме.
Под термином «умение сформировано полностью» в данном случае понимается выполнение задания с обоснованием и пояснением ответа, а также хода решения. Под «умение сформировано частично» понимается выполнение задания с нечетким пояснением, либо с пропуском некоторых промежуточных рассуждений в ходе решения. Под «умение не сформировано» понимается невыполнение задания. Чаще всего ошибки возникали в заданиях в заданиях четвертого и шестого типа из-за определенной неподготовленности к решению такого типа заданий, а также из-за недостаточно прочного закрепления теоретического материала предыдущей темы.
В ходе выполнения упражнений учащиеся допускали следующие ошибки:
а) неправильно определяли плоскость, которой принадлежит тот или иной объект;
б) неверно указывали точку пересечения некоторых известных элементов, не указывали все точки, принадлежащие плоскости;
в) неправильно указывали прямую пересечения двух плоскостей;
г) не видели логических следствий из ранее изученных теорем или не могли их применить в измененной ситуации;
д) указывали не все требуемые объекты.
Для сравнения результатов констатирующего среза в качестве контрольного класса был взят 10 класс Чердынской общеобразовательной школы. После проведенного аналогичного среза были получены следующие результаты.
- с первым заданием полностью справились 14 человек, что составляет 61%, частично справились 24%, не справились 15%;
- во втором задании у 45% учащихся умение определять точку пересечения прямой и плоскости, двух прямых, а также на нахождение прямой пересечения двух плоскостей сформировано полностью, у 35% это умение сформировано частично, а 20% не справились с заданием;
- с третьим заданием 60% полностью справились, 27% справились частично, 13% не справились;
- с четвертым заданием 32% справились, 34% справились частично, 34% не справились;
- с пятым заданием 65% справились полностью, 20% справились частично, 15% не справились.
- с шестым заданием 60% справились полностью, 20% справились частично, 20% не справились.
Как показывают полученные данные в контрольном классе результаты оказались практически одинаковыми.
Таким образом, в данном параграфе представлена организация проведения разработанной методики на основе модели с использованием модульной технологии, констатирующий срез, его результаты.

2.3 АНАЛИЗ ВНЕДРЕНИЯ МОДЕЛИ

Апробирование методики с использованием разработанной нами модели на основе модульной технологии мы проводили на примере тем: «Параллельность прямых и плоскостей в пространстве», «Перпендикулярность прямых и плоскостей в пространстве» (Приложение 4).

В проведенных уроках использовались следующие формы организации работы учащихся:

- коллективная работа учащихся всего класса;

- работа учащихся в парах.

В процессе работы в парах учащимся предлагался разработанный модуль, изучая который в течение определенного времени, они ознакамливались с теоретическим материалом, искали ответы на поставленные перед ними вопросы. В ходе коллективной работы весь класс отвечал на поставленные вопросы, решал предоставленные им задания.

Процесс обучения происходил с помощью модулей, учебными элементами которых являлись: цель, ознакомление с теоретическими положениями, исторические сведения, проверка усвоения теоретического материала, участие в учебной беседе, самостоятельное выполнение заданий, выполните контрольных заданий. Каждый школьник обучался в индивидуальном темпе по своей программе. Учитель выступал в роли консультанта.
Перечислим методы, используемые в рамках разработанной нами модели (по Ю.К. Бабанскому).
Методы обучения
Основная подгруппа
Отдельные методы обучения
1. Методы стимулирования и мотивации учения
1.1. Методы формирования интереса к учению
1.1. Познавательные игры, учебные дискуссии, методы эмоционального стимулирования
1.2. Методы формирования чувства долга и ответственности в учении
1.2. методы учебного поощрения, порицания, предъявления учебных требований
2. Методы организации и осуществления учебных действий и операций
2.1. Перцептивные методы (передачи и восприятия учебной информации посредством чувств):
словесные
наглядные
аудиовизуальные
практические
Лекция, рассказ, беседа
Иллюстрация, демонстрация
Сочетание словесных и наглядных
Упражнения
2.2. Логические методы (организация и осуществление логических операций)
Индуктивные, дедуктивные, аналогии и пр.
2.3. Гностические методы (организация и осуществление логических операций)
Проблемно-поисковые (проблемное изложение, эвристический, исследовательский), репродуктивные (инструктаж, иллюстрирование, объяснение и практическая тренировка)
2.4. методы самоуправления учебными действиями
Самостоятельная работа
3. Методы контроля и самоконтроля
3.1. методы контроля
Устный, письменный, лабораторный и машинный контроль, самоконтроль
Дадим описание и анализ каждого из проведенных модулей.
Первый модуль посвящен теме «Параллельность прямых и плоскостей в пространстве». Обучаясь по нему учащиеся познакомились с:
- определениями параллельных и скрещивающихся прямых в пространстве, прямой, параллельной плоскости, параллельных плоскостей в пространстве;
- случаями взаимного расположения прямых, прямой и плоскости, а также двух плоскостей в пространстве;
- основными теоремами данной темы;
- способами задания плоскости в пространстве,
- историческими сведениями по теме изучения.
А также закрепили полученные знания на практике путем обсуждения теоретических вопросов в устной беседе, решением заданий, как элементарных, так и повышенного типа.
После изучения первого модуля с учащимися проведен промежуточный срез.
1. Каково взаимное расположение прямых KE и MH, если точки K, E, M, H - середины ребер AB, BC, CD, DA тетраэдра ABCD (рис.4)?
(А) пересекаются
(В) скрещиваются
(Б) параллельны
(Г) могут быть пересекающимися, параллельными и скрещивающимися (в зависимости от вида тетраэдра)
2. Каково взаимное расположение прямых KM и BC? (Рис.4)
(А) пересекаются
(В) скрещиваются
(Б) параллельны
(Г) возможны все три случая (А) - (В)
3. Каково взаимное расположение прямых AB1 и BD1, если дан прямоугольный параллелепипед ABCDA1B1C1D1? (Рис.5)
(А) скрещиваются
(В) параллельны
(Д) не определить
(Б) пересекаются
(Г) пересекаются или параллельны
B? C?
A? D?
С
A D
Рисунок 5
4. Какие из прямых b = BB1, c = CC1, d = D1C1 скрещиваются с прямой a = AB? (Рис.5)
(А) только b
(В) только c и d
(Д) все три прямые b, c, d
(Б) только c
(Г) только b и c
5. Каково взаимное расположение прямой B1C1 и плоскости BDA1? (Рис.5)
(А) параллельны
(В) пересекаются или параллельны
(Б) пересекаются
(Г) ответ отличен от (А) - (В)
6. Каково взаимное расположение плоскостей BDA1 и B1D1C? (Рис.5)
(А) параллельны
(В) пересекаются или параллельны
(Б) пересекаются
(Г) ответ отличен от (А) - (В)
7. В пространстве даны прямая a и точка M. Сколько существует прямых, проходящих через M и параллельных прямой a?
(А) 0
(В) бесконечно много
(Д) 1 или бесконечно много
(Б) 1
(Г) 0 или 1
8. Даны параллельные прямая a и плоскость б. Сколько существует плоскостей, проходящих через a и и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.