На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


практическая работа Методика формування творчої особистост при вивченн математики. Роль гри та нестандартних урокв у пдвищенн нтересу учнв до вивчення математики. Реалзаця мжпредметних зв'язкв на уроках математики. Незвичайн творч вправи до урокв математики.

Информация:

Тип работы: практическая работа. Предмет: Педагогика. Добавлен: 29.07.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


Творчий підхід до вивчення математики
зміст

1. Формування творчої особистості учня в процесі навчання математики
Властивості творчої особистості
Методика формування творчої особистості при вивченні математики
Роль гри та нестандартних уроків у підвищенні інтересу учнів до вивчення математики
Реалізація міжпредметних зв'язків на уроках математики
4. Незвичайні творчі вправи до уроків математики
1. Формування творчої особистості учня в процесі навчання математики
1.1 Властивості творчої особистості
Проблема творчості в наші дні стала настільки актуальною, що вона по праву вважається проблемою століття.
Школа покликана якомога раніше виявити якості творчої особистості в учнів, і розвивати їх у всіх школярів, зважаючи, звичайно, на те, що діти народжуються з різними задатками творчості. Водночас більшою мірою потрібно дбати про розвиток творчої особистості у здібних та обдарованих учнів.
Для того, щоб формувати творчу особистість у процесі навчання математики були виділені такі основні властивості творчої особистості:
ь сміливість думки, схильність до ризику;
ь фантазія;
ь уявлення і уява;
ь проблемне бачення;
ь вміння долити інерцію мислення;
ь здатність виявляти суперечності;
ь вміння переносити навчальні досягнення і досвід у нові ситуації;
ь незалежність;
ь альтернативність;
ь гнучкість мислення;
ь здатність до самоуправління.
Творча особистість, на думку В.Андрєєва, - це такий тип особистості, для якого характерна стійка, високого рівня спрямованість на творчість, мотиваційно-творча активність, що проявляється в органічній єдності з високим рівнем творчих здібностей, які дозволяють їй досягти прогресивних, соціально та особисто значущих результатів у одній або кількох видах діяльності.
Творчі здібності особистості - це синтез її властивостей і рис характеру, які характеризують ступінь їх відповідності вимогам певного виду навчально-творчої діяльності і які обумовлюють рівень результативності цієї діяльності.
В.Крутецький виділяє такі компоненти математичних здібностей:
здібність до формалізації математичного матеріалу, до відділення форми від змісту, абстрагування від конкретних кількісних відношень і просторових форм та оперування формальними структурами відношень і зв'язків;
здібність узагальнювати математичний матеріал, вичленувати головне, відволікатися від неістотного, бачити загальне у зовні різному;
здібність до оперування числовою і знаковою символікою;
здібність до «послідовного, правильно розчленованого логічного міркування» (А.Колмогоров. О професеии математика, изд. 3, изд-во МГУ, 1959, с. 10), пов'язаного з потребою в доведеннях, обґрунтуванні, висновках;
здібність скорочувати процес міркувань, мислити згорнутими структурами;
здібність до зворотності процесу мислення (переходу з прямого на обернений хід думки);
гнучкість мислення, здібність до переключення від однієї операції до другої, звільнення від впливу шаблонів і трафаретів, що сковує. Ця особливість мислення важлива у творчій роботі математика;
математична пам'ять. Можна припустити, що її характерні особливості також випливають з особливостей математичної науки, що це пам'ять на узагальнення, формалізовані структури, логічні схеми;
здібність до просторових уявлень і уяви, яка прямим чином пов'язана з наявністю такої галузі математики, як геометрія (особливо геометрія у просторі).
Творчі здібності самі по собі не гарантують творчих здобутків. Для їх досягнення необхідний «двигун», який запустив би в роботу механізм мислення, тобто необхідні бажання і воля, потрібна «мотиваційна основа».
Можна розглянути інтелектуально-еврестичні здібності особистості, які включають:
Здібності генерувати ідеї, висувати гіпотези, що характеризує інтелектуально-еврестичні властивості особистості в умовах обмеженої інформації, прогнозувати розв'язання творчих задач, інтелектуально вбачати і висувати оригінальні підходи, стратегії, методи їх розв'язання. Критерієм оцінки є кількість ідей, гіпотез, що висувається особистістю за одиницю часу, їх оригінальність, новизна, ефективність для розв'язання творчої задачі.
Здібність до фантазії. Це найбільш яскраве виявлення творчої уяви, створення інколи неправдоподібних, парадоксальних образів і понять. Критерієм оцінки є яскравість і оригінальність образів, новизна, значимість фантазії, що виявляється при розв'язуванні творчих задач.
Асоціативність пам'яті, здібність відображати і встановлювати в свідомості нові зв'язки між компонентами задачі, особливо відомими і невідомими за схожістю, суміжністю, контрастом. Критерієм оцінки є кількість асоціацій за одиницю часу, їх оригінальність, новизна, ефективність для розв'язання задачі.
Здібність бачити протиріччя і проблеми. Критерієм оцінки є кількість розкритих протиріч, сформульованих проблем за одиницю часу, їх новизна й оригінальність.
Здібність до переносу навчальних досягнень, умінь у нові ситуації характеризує продуктивність мислення. Критерієм оцінки є широта переносу (внутріпредметний - близький, міжпредметний - дальній), ступінь ефективності переносу навчальних досягнень і умінь для розв'язування творчих задач.
Здібність відмовлятися від нав'язливої ідеї, перебороти інерцію мислення. Критерієм оцінки є ступінь швидкості переключення мислення на новий спосіб розв'язання творчої задачі, гнучкість мислення в пошуку нових підходів до аналізу протиріч, що виникають.
Незалежність мислення характеризує здібність не слідувати бездумно загальноприйнятій точці зору, бути вільним від думки авторитетів, мати свою точку зору. Критерієм оцінки є гнучкість та інверсія мислення, ступінь незалежності власної думки від думки інших.
Критичність мислення - це здібність до оціночних суджень, вміння правильно оцінити процес і результат власної творчої діяльності та діяльності інших, вміння знаходити власні помилки, їх причини і причини невдач. Критерієм оцінки є об'єктивність критеріїв оціночних суджень, а також ефективність виявлення причин своїх помилок і невдач.
У методиці навчання математики і в шкільній практиці існує думка, що треба оберігати учнів від помилок, щоб вони їх не запам'ятовували і менше допускали. З психологічної точки зору з цією думкою можна погодитися лише відносно матеріалу, який засвоюється здебільшого на основі механічної пам'яті. Оскільки більшість математичного матеріалу спирається в основному на словесно логічну пам'ять, то помилок, пов'язаних з пошуком шляху розв'язання, не слід боятися, якщо своєчасно звернути на них увагу і добитися розуміння причин, що їх породили.
Учні, які навчаються лише на позитивних прикладах, більш схильні до поспішних висновків, у них менш розвинене критичне мислення. Крім того, боязнь помилитися гальмує активність мислення, стримує політ творчої фантазії і розвиток уяви.
Досвід багатьох вітчизняних та закордонних педагогів свідчить про вірогідність успішного формування у школяра якостей творчої особистості.
Для цього учням варто надавати максимум можливостей для випробування себе в творчості, причому починати треба з найпростіших завдань. Навчання творчості має відбуватися в першу чергу і в основному на програмному матеріалі з математики, а в разі потреби і на спеціально побудованій системі задач. Засвоюючи досвід творчої діяльності, характерні для неї процедури, учні набувають здібності видозмінювати ті стереотипи мислення, яким вони вже навчилися, вчаться відмовлятися від стереотипів, конструювати нові підходи до осмислення раніше засвоєного або нового змісту.
1.2 Методика формування творчої особистості при вивченні математики
Розглянемо методичну систему навчання математики, в процесі якої формується і розвивається творча особистість учнів. Як і в будь-якій методичній системі доцільно виділити п'ять компонентів: цілі, зміст, методи і прийоми, організаційні форми і засоби навчання. Цілі формування і розвитку творчої особистості ми розглянули в попередньому пункті. Зміст навчального матеріалу становить теоретичний матеріал і система вправ, передбачених програмою, підручниками та спеціальна система прикладів і задач, які сприяють розвитку творчості учнів і які називають творчими.
Творчою задачею називають таку, яка або вся в цілому є новою, або ж, меншою мірою, містить значну новизну, що і зумовлює значні розумові зусилля, спеціальний пошук, знаходження нового способу її розв'язання.
На початкових етапах організації навчально-творчої діяльності найефективнішими виявляються методи проблемного навчання як дидактичної системи. Проблемний виклад, який здійснює сам учитель, навчає учнів способам мислення при розв'язуванні поставлених проблем. Частково-пошуковий метод або евристична бесіда залучає учнів до самостійного відкриття способу доведення теореми або розв'язання задачі. При цьому важливі характер і форма питань, які вчитель пропонує учням. Аналіз шкільної практики показує, що взагалі 99% питань, які пропонують учням, вимагають лише відтворення матеріалу підручника, хоч і такі питання потрібні, коли здійснюють контроль стану засвоєння вивченого навчального матеріалу. Зрозуміло, що під час евристичної бесіди складніші питання доцільно пропонувати добре встигаючим учням, не позбавляючи можливості відповісти при бажанні будь-якого учня. Простіші питання слід пропонувати слабкішим учням, щоб залучити їх до процесу колективного пошуку доведення теореми чи розв'язання складнішої задачі.
Один із психологічних принципів розвиваючого навчання стверджує необхідність систематично розвивати як алгоритмічні, так і евристичні прийоми розумової діяльності. Переважна кількість способів діяльності, які передбачено програмою з математики, належить до алгоритмічного типу. Але недоцільно йти шляхом пропонування учням тільки готових правил, алгоритмів. Доцільно на прикладах розв'язання двох-трьох задач, прикладів або доведень математичних тверджень організовувати колективний пошук правила, алгоритму чи евристичної схеми розв'язання, методу або способу доведення.
Що стосується евристичних прийомів розумової діяльності, то найефективнішим з них є «аналіз через синтез», введений С.Л.Рубінштейном.
У 30 - 40-ві роки XX ст. було розроблено нові евристичні методи творчої діяльності: «мозкової атаки», або «мозкового штурму», синектики, морфологічного аналізу, метод фокальних об'єктів, які ставили за мету позбутися методу проб і помилок, що був неефективним і надзвичайно громіздким.
Розглянемо основні з цих методів:
1) Колективна «мозкова атака» (або «метод мозкового штурму», або брейнстормінг). Цей метод було запропоновано американським ученим А.Осборном як покращений варіант евристичного діалогу Сократа. його використовують в умовах групових форм навчання, причому найоптимальнішими вважають групи від 7 до 13 осіб.
Винахідники та експериментальне навчання в школі свідчать, що колективно генерувати ідеї ефективніше, ніж індивідуально.
У шкільній практиці активізація навчально-творчої діяльності часто стримується через побоювання учнів помилитися і бути підданими критиці. Заважає також жорсткий стиль керівництва, тиск думок авторитету вчителя або здібних товаришів, відсутність позитивних емоцій.
«Мозковий штурм» як колективний метод генерування ідей при розв'язанні творчих задач ставить за мету зібрати якнайбільше різноманітних ідей. Щоб усунути негативні моменти традиційного колективного навчання, вводять принципи і правила цього методу: абсолютна заборона критики ідей, запропонованих учасниками «мозкового штурму», схвалення усіх можливих реплік, жартів. Керівник дискусії повинен уміло спрямовувати її хід, вдало ставити стимулюючі запитання, при потребі підказувати, використовувати репліки. Перевага віддається гетерогенним (різнорівневим) групам. «Мозковий штурм» може продовжуватися від 15 хв. до 1 год. Відбір ідей здійснюють спеціалісти, експерти, які оцінюють ідеї у два етапи: спочатку із загальної кількості відбирають найраціональніші і найоригінальніші, а потім з урахуванням специфіки задачі і мети її розв'язання.
Отже, метод «мозкового штурму» активізує творчу думку при виконанні чотирьох правил:
ь виключається критика, можна висловлювати без побоювання будь-яку думку;
ь заохочується будь-яке вільне асоціювання: чим більш дикою здається ідея, тим краще;
ь кількість ідей, які висувають, повинна бути якомога більшою;
ь дозволяється як завгодно комбінувати висловлені ідеї, видозмінювати їх, тобто «покращувати» ідеї, що висунуті іншими членами групи.
2) Сутність методу синектики, запропонованого І.Гордоном як метод творчої діяльності, полягає в тому, щоб глибоко вивчити проблему і звикнути до неї, тобто зробити незнайоме знайомим, а від звичного відмовитись.
Вона ґрунтується на послідовному застосуванні чотирьох видів аналогій: прямої (як розв'язують схожі задачі), особистої (уявляючи себе на місці об'єкта, що змінюється), символічної (у вигляді короткої образної назви задач) і фантастичної аналогії (з використанням казкових персонажів).
3) Морфологічний аналіз як метод розв'язування творчих задач був запропонований Цвіккі. Сутність його полягає в тому, що враховують параметри будь-якого об'єкта - потужність, швидкість, вид руху, освітленість, спосіб обігрівання, охолодження, геометричні розміри тощо. Ці параметри - морфологічні осі - можуть по-різному варіюватися для різних випадків. Виписані можливі варіанти морфоосей і зведені разом формують морфологічний ящик. Нова конструкція може виявитися прогресивною, оскільки одержуємо стискування різних випадкових параметрів морфоосей.
4) При використанні методу фокальних об'єктів (автор Цвіккі), який пізніше був розвинений американським дослідником Вайтингом, властивості навмання відібраних слів переносять на ключовий об'єкт, який знаходиться ніби у фокусі цих властивостей.
У творчій діяльності використовують також прийоми, які сприяють розв'язанню складної, нестандартної задачі або проблеми.
Запитання. Сутність цього прийому полягає в тому, щоб сформулювати якомога більше запитань, що стосуються даної задачі або проблеми, і спробувати знайти відповіді на них. Сократ перший зазначив, що «запитання є повивальною бабкою, що допомагає народитися новій думці».
Відстрочка. Якщо знайти розв'язання задачі не вдається, треба відкласти її і зайнятися чимось іншим. Через деякий час варто повернутися до задачі, і спосіб розв'язання може бути знайдено.
Фіксація. Важливо завжди і за будь-яких умов мати при собі засіб для запису думки, що майнула.
Завдання, які розвивають творчі здібності учнів, за складністю можна класифікувати умовно, оскільки одне й те саме завдання для одного учня може виявитися важким, а для іншого - легким. Водночас розбиття їх за характером завдань може виявитися корисним для правильного визначення місця і форми роботи з ними.
Одну з класифікацій пропонує П.Ю.Германович.
1. Запитання й усні вправи на обчислення і перетворення, близькі за змістом і трудністю до звичайних усних вправ. Місце роботи - урок.
2. «Некнижкові» запитання з теоретичного матеріалу і різноманітні усні і напівсні вправи дещо підвищеної складності. Можливі форми використання:
ь додаткові завдання в звичайних класних контрольних роботах;
ь тематичні вікторини на заняттях математичного гуртка;
ь усна олімпіада або мішана вікторина - на математичному вечорі.
3. Задачі на кмітливість (включаючи сюди і деякі з «некнижкових» запитань і окремі вправи). Простіші з них можуть бути використані:
ь у вигляді факультативної частини звичайних домашніх завдань (особливо при тематичному збігу з розділами програми, які вивчають і при відсутності математичного гуртка);
ь у вигляді додаткових завдань до класної контрольної роботи;
ь у розділі «Задачі» математичної газети;
ь на заняттях математичного гуртка в умовах звичайного письмового розв'язання задач.
Найскладніші, нестандартні задачі використовують:
ь як частину домашніх завдань, які пропонують до наступних занять гуртка;
ь при підготовці до олімпіад різного рівня. На заняттях гуртка, факультативу;
ь у розділі «Задачі» шкільної математичної газети. Тільки врахування комплексу психолого-педагогічних і
методичних умов і вимог, які сприяють формуванню і розвитку творчої особистості учня у процесі навчання математики, може забезпечити досягнення поставлених цілей і задач.
2. Роль гри та нестандартних уроків у підвищенні інтересу учнів до вивчення математики
Учитель відбувся тоді, коли він хоче йти на роботу і, незважаючи на альтернативу, не змінює професію, коли він бачить у дітях, яких навчає і виховує, результат. Кожен учитель має нести відповідальність за те, якими учні вийшли з його уроку. Тобто після уроку в учнів не повинна згаснути жага до знань і любов до життя. На уроці учень має здобувати знання і вчитися ними оперувати, витрачаючи на це лише частку своїх сил. Якщо учень протягом уроку працював - вчився встановлювати взаємозв'язки між явищами та предметами, пояснювати, аргументовано відтворювати засвоєне, публічно захищати свою думку, гідно відповідати опоненту, і при цьому не втрачати віру в себе, то урок не пройшов для неї даремно.
Відомо, що діти йдуть до школи за спілкуванням з друзями, з учителем. Найбільшу радість і задоволення вони отримують від роботи на уроці, що дозволяє відкрити себе і свої задатки, здібності тощо. Очі дітей и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.