На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Математическое мышление как один из важнейших компонентов процесса познавательной деятельности. Основные подходы к трактовке феномена математическое мышление в психолого-педагогической литературе. Формирование, значение двух типов когнитивных структур.

Информация:

Тип работы: Реферат. Предмет: Педагогика. Добавлен: 26.09.2014. Сдан: 2009. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


18
Теоретические подходы к феномену "математическое мышление"
Исследования многих отечественных и зарубежных психологов показывают, что без целенаправленного развития математического мышления, являющегося одним из важнейших компонентов процесса познавательной деятельности, невозможно достичь эффективных результатов и обучении, систематизации знаний, умений и навыков [1].
К сожалению, единого мнения по вопросу определения понятия математического мышления в психолого-педагогической и методической литературе нет.
При его характеристике возникают сложные вопросы о взаимосвязи этого понятия с понятиями мышление вообще и конкретные виды мышления.
Одни исследователи считают, что математического мышления как такового, обладающего своими специфическими формами мыслительных действий, нет; своеобразие такого мышления связано, по их мнению, лишь с характером собственно математического материала. Другими словами, представители первого подхода отрицают специфику математического мышления (Л.С. Трегуб, Г. Фрейдепталь и др.).
Так, Л.С. Трегуб полагает, что демонстрация "единых принципов человеческого познания означает, что нет особых методов математического мышления" [2, с. 7], своеобразного по методу и по способу своего функционирования. З.И. Слепкань считает неправомерными попытки введения этого понятия с выделением в нем своих особенностей и компонентов и его отождествление с логическим мышлением [3, с. 18], а Г. Фрейдепталь пишет, что пока невозможно убедительно раскрыть суть математического мышления [4, с. 9].
Мы согласны с Л.К. Максимовым [5; 6; 7] в том, что, хотя методы математического мышления сейчас широко применяются в других науках и имеют статус общих методов познания, все-таки оно имеет свои особенности, которые отличают его от мышления в других научных областях. Специфику математического мышления следует искать не в его методах, а в его объектах [8], -- так как первые порождаются вторыми, а также "в своеобразии его предметного содержания" [5].
Так, математик и философ Г. Вейль пишет: "В процессе мышления мы пытаемся постичь разумом истину; наш разум стремится просветить себя, исходя из своего опыта. Поэтому, подобно самой истине и опыту, мышление по своему характеру есть нечто довольно однородное и универсальное. Влекомое глубочайшим внутренним светом, оно не сводится к набору механически применяемых правил и не может быть разделено водонепроницаемыми переборками на такие отсеки, как мышление историческое, философское, математическое и другое. Правда, существуют -- скорее внешне -- некоторые специфические особенности и различия; так, например, процедуры установления фактов в зале суда и в физической лаборатории заметно различаются. Под математическим способом мышления я понимаю, во-первых, особую форму рассуждений, посредством которых математика проникает в науки о внешнем мире -- физику, химию, биологию, экономику и т.д. и даже в наши размышления о повседневных делах и заботах, и, во-вторых, ту форму рассуждений, к которой прибегает в своей собственной области математик, будучи предоставленным самому себе" [9].
Второй подход представлен исследованиями Ж. Пиаже и его сторонников (мышление как "биологический процесс") [10]. Согласно этим ученым, под математическим мышлением понимается собственно логико-математическое мышление, имеющее так называемые "абстракции действия". Теория Пиаже включает в себя два основных компонента: учение о функциях интеллекта и учение о стадиях его развития. Развитие детского мышления понимается как смена соответствующих стадий и описывается с помощью понятий логики и математики. Так, например, в дошкольном и школьном возрасте у детей формируются умственные структуры, соответствующие основным математическим структурам (алгебраическая, топологическая, порядка), которые выделены в математике Нурбак. Математические структуры, по мнению Ж. Пиаже, являются формальным продолжением умственных структур. Основу такого соответствия он видит в их генетическом родстве (его источник -- абстракции действий) [10]. Таким образом, концепцию Ж. Пиаже можно сформулировать следующим образом: лишь на основе сложившихся умственных структур возможно формирование математического мышления у детей.
Отечественная психология неоднозначно относится к трудам Ж. Пиаже, отмечая в них как сильные, так и слабые стороны. П.Я. Гальперин и Д. Эльконин не согласны ни с тем, что логика является единственным или хотя бы главным критерием мышления, пи с тем, что уровень формально-логических операции составляет высший уровень развития мышления.
Согласно Ж. Пиаже, интеллектуальное, и в частности математическое развитие закапчивается к 15 годам, так как к этому времени все структуры у подростка уже сформированы, Б дальнейшем речь может идти лишь об их конкретизации и наполнении различными знаниями, умениями, навыками и способами деятельности. Однако, как показали исследования И.Я. Каплуновича, после 15 лет математическое развитие продолжается, прежде всего за счет формирования разнообразных связей и отношений между отдельными подструктурами [11].
Л.К. Максимов считает, что этот подход не освещает вопрос о функциональном развитии мышления. Развитие детского мышления понимается как смена стадий развития интеллекта, которые "привязаны" к возрасту. Кроме того, теория Ж. Пиаже "абсолютизирует момент самодвижения" и "недооценивает значение целенаправленных, формирующих воздействий извне", так как определяется только внутренними закономерностями развития ребенка. Несмотря на это, в ней был получен ряд важных результатов. Как отметил Ж. Пиаже, "характерное для юношества рефлексивное мышление зарождается с 11 -- 12 лет, начиная с момента, когда субъект становится способен рассуждать гипотетико-дедуктивно" [10]. Третий подход представлен исследованиями Л.Б. Ительсоиа, И.Я. Каплуновича, Д. Нормана, В.А. Тестова, М.А. Холодной и др. о структуре мышления. Так, В.А. Тестов утверждает, что "идея структур, нашедшая свое отражение (и оказавшаяся весьма плодотворной) в многотомном трактате Н. Бурбаки, а также соответствие между математическими структурами и структурами человеческого мышления, обнаруженное школой Ж. Пиаже, послужили побудительными мотивами к радикальной реформе математического образования в 60-70-х годах в школах и вузах как за рубежом, так и в нашей стране... Существенным недостатком в стратегии обучения, проявившимся в ходе реформы, явилось то, что большинство ученых-модернизаторов, опираясь на отдельные результаты Ж. Пиаже, ограничились попытками внедрения в школьную математику только алгебраических, порядковых и топологических структур и не уделили должного внимания другим видам математических структур (комбинаторным, алгоритмическим, образно-геометрическим и т.д.), играющим особую роль в исследовательской активности, в образовании новых понятийных структур" [12].
Современная психология дает все основания полагать, что основами интеллектуальных процессов являются различные сложные познавательные структуры, имеющие разное количество иерархических уровней.
В когнитивной психологии считается установленным фактом, что информация хранится в памяти преимущественно не в виде непосредственных слепков того, что было воспринято, а в виде более или ме-нее обобщенных продуктов умственной переработки воспринятого -- репрезентативных когнитивных структур или когнитивных схем,
Репрезентативные когнитивные структуры - это внутренние психологические структуры, которые складываются в процессе жизни и обучения в голове человека, это способ описания и хранения знаний в долговременной памяти. В этих структурах представлена сложившаяся у человека картина мира, общества и самого себя.
В процессе обучения математике у человека складываются специфические когнитивные структуры, являющиеся отражением объективно существующих математических структур. Различают два типа когнитивных структур, формирующихся по "горизонтальному" и "вертикальному" принципу (В.А. Тестов, М.А. Холодная). К первому относятся алгебраические, порядковые и топологические когнитивные структуры, выступающие как прототипы, упрощенные модели математических объектов, прежде всего как комплекс, средства хранения математических знаний. Ко второму -- логические, алгоритмические, комбинаторные, образно-геометрические когнитивные схемы, причем они выступают, в первую очередь, как средства, методы математического познания.
В процессе обучения структуры претерпевают изменения. В зависимости от характера последних Д. Норманом были выделены три различные формы научения [12]:
1) наращивание структур -- добавление нового знания к уже существующим схемам памяти;
2) создание структур -- образование новых понятийных структур, новое осмысление, качественное обновление системы знаний;
3) настройка структур -- топкое приспособление знания к задаче.
К этим формам В.А. Тестов добавляет еще одну, фактически рассмотренную Л.Б. Ительсоном:
4) перестройка структур. Эта форма научения состоит из преобразований структур трех типов:
а) переход на более высокую ступень организации, когда сформированная ранее структура становится подструктурой новой, более широкой (например, структура натуральных чисел становится подструктурой рациональных чисел);
б) изменение принципа организации структуры, когда координация (сочета-ние) частей внутри нее заменяется их субординацией (подчинением) или обратно (например, целые числа и дроби -- лишь с определенного момента в обучении целое число становится частным случаем дроби);
в) перецентровка структуры, т.е. выдвижение в качестве существенных тех элементов, которые были второстепенными, и обратно (например, при переходе от изучения равных треугольников к изучению подобных длины соответствующих сторон становятся второстепенными, а величины соответствующих углов -- главными признаками).
Несколько иная точка зрения о структуре мышления приводится в исследованиях И.Я. Каплуновича. Согласно его модели, структура математического мышления представляет собой пересечение пяти основных подструктур: топологической, порядковой, метрической, композиционной (алгебраической) и проективной [13].
Топологическая подструктура обеспечивает замкнутость, компактность, связанность осуществляемых мышлением преобразований, непрерывность трансформаций, мысленное выращивание, выделение в представлении требуемого объекта (его образа). Порядковая дает возможность постоянного сопоставления человеком математических объектов и их элементов по таким характеристикам, как больше--меньше, ближе--дальше, часть-целое, изменение направления движения и его характера, положение, форма, конструкция предмета. Метрическая позволяет вычленять в объектах и их компонентах количественные величины и отношения (пропорции, численные значения размеров, углов, расстояний). С помощью алгебраической подструктуры человек осуществляет не только прямые и обратные операции над математическими объектами, расчленение и соединение их составляющих, по и замену нескольких операций -- одной из определенной совокупности, объединение нескольких блоков предмета в один, выполнение математических преобразований в любой последовательности. Наконец, проективная подструктура обеспечивает изучение математического объекта или его изображения с определенного самостоятельно выбранного положения, проецирование с этой позиции объекта па изображение (или изображения на объект) и установление соответствия между ними.
Указанные пять подструктур в математическом мышлении человека существуют не автономно, не изолированно, они не равнозначны и не рядоположены, а пересекаются и находятся в определенной зависимости, иерархии по степени значимости и представительности в интеллекте. В соответствии с индивидуальными особенностями та или иная подструктура занимает место главной, ведущей, доминирующей. Она наиболее ярко выражена по сравнению с остальными, более-устойчива и лучше развита. Эту модель структуры мышления мы назовем "направленностью ума".
На наш взгляд, эта модель структуры мышления может оказать помощь в поиске ответов па нелегкие вопросы, связанные с дифференцированным обучением в начальной школе. Она описывает структуру мышления ребенка и предлагает ориентиры для дальнейшей работы в направлении его развития.
Знание индивидуальных доминантных подструктур мышления учащихся может оказать существенную помощь и при организации на уроке групповой работы. Если вместе объединяются дети с разными доминантными подструктурами, то сплоченной работы, единомыслия ожидать от них трудно. Такие группы целесообразно создавать в тех ситуациях, когда дети должны выработать разные точки зрения, разные подходы, разные решения. Помогает такая форма организации и тогда, когда мы хотим, чтобы сверстники помогли своему товарищу принять ИНОЙ взгляд, позицию, другое решение. Собрав в группу детей с одинаковой подструктурой мышления, можно быть уверенным, что они легко и быстро поймут друг друга и их совместная работа будет быстро продвигаться, окажется продуктивной.
Сторонники самого распространенного, четвертого подхода (Ж. Адамар, А.Я. Хинчип, С.И. Шварцбурд, А. Пуанкаре и др.) характеризуют математическое мышление как абстрактное, логическое, обладающее способностью к формализации, обобщению, пространственным представлениям и др., т.е. наделяют качествами, которые фактически определяют характеристику мышления не только в математической, по и в любой другой предметной области.
Среди характерных черт математического мышления называют абстрактность, широту, глубину, гибкость и другие качества. Так, например, Г. Хемли выделил три вида операций: классификацию, порядок и соответствие, считая, что они наиболее полно характеризуют действия с любым математическим материалом.
В исследованиях К. Дупкера в качестве условий, способствующих развитию мышления в области математических объектов, выделены широта, гибкость и способность абстрагироваться от конкретного содержания. Он отмечает: "Плохой математик не может легко осуществить преобразование потому, что мыслимое им содержание не является относительно неподвижным, жестким и поэтому с трудом поддающимся перестройке" [14. с. 231].
Н. Манер [15] также придает большое значение гибкости мышления и процессе решения задач, в том числе и математических. Он полагает, что привычный способ действия тормозит выработку правильного решения, создаст трудности в использовании различных подходов.
Особенно важным в решении задач считается способность к генерализованному пониманию ситуации, к схватыванию структурных соотношений и обобщенном виде [16]. В результате интроспективного исследования структуры математического мышления В. Хаекер и Т. Циген выделили компоненты, составляющие, по их мнению, "ядро" такого мышления [1]:
1) пространственное -- понимание пространственных фигур, образов и их составляющих, память па пространственные образы, пространственные абстракции;
2) логический -- образование понятий (типа "синус", "тангенс" и т.п.) и понятий абстракций; понимание, запоминание и самостоятельное выведение общих понятийных связей, заключений и доказательств по правилам формальной логики, образование числовых представлений, память на числа, числовые решения;
3) символический -- понимание и запоминание символов, операции с ними.
Специфика математического мышления и его особенности отмечаются во многих работах математиков-педагогов. Так, А. Пуанкаре и Ж. Адамар, с одной стороны, отмечали специфичность мышления математика, проявляющуюся в свойственной ему "математической индукции", подсознательной творческой работе, указывая, что математическое творчество связано с общим интеллектом, творчеством вообще; с другой стороны, говорили о необходимости особого логического мышления.
Большое значение придавал роли "бессознательного мыслительного процесса" русский математик Д.Д. Мордухай-Болтовский. Он писал: "Мышление математика ...глубоко внедряется в бессознательную сферу, то всплывая па поверхность, то погружаясь в глубину ...Математик не осознает каждого шага мысли, как виртуоз -- движе и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.