На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Определение центра тяжести сечения. Вычисление, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю, построение эпюры крутящих моментов. Расчет значений осевых и центробежных моментов инерции, построение схемы сечения.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 06.08.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Задача 1.

Определить центр тяжести сечения.

Решение

Укажем оси координат X и Y с началом в нижнем левом углу сечения.
Сечение разобьем на два простых сечения - прямоугольник 1 с центром тяжести С1 и квадрат 2 с центром тяжести С2.
Координаты центра тяжести С сечения находим по формулам:
и , где
x1 = 15 мм - координата центра тяжести С1 прямоугольника по оси Х;
y1 = 30 мм - координата центра тяжести С1 прямоугольника по оси Y;
x2 = 45 мм - координата центра тяжести С2 квадрата по оси Х;
y2 = 15 мм - координата центра тяжести С2 квадрата по оси Y;
F1 = = 1800 мм2 - площадь прямоугольника;
F2 = = 900 мм2 - площадь квадрата.
Тогда
мм, мм.
Задача 2.

К стальному валу приложены три известных момента М1, М2, М3. Требуется: 1) установить, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю; 2) для найденного значения Х построить эпюру крутящих моментов; 3) при заданном значении [ф] определить диаметр вала из расчета на прочность и округлить его значение до ближайшего, равного 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 мм; 4) построить эпюру углов закручивания; 5) найти наибольший относительный угол закручивания (на 1 м).
Для стали принять G = МПа. Полярный момент инерции м4
a = 1,9 м, b = 1,2 м, c = 1,4 м,
М1 = 1900 Нм, М2 = 1200 Нм,
М3 = 1700 Нм, [ф] = 75 МПа.

Решение.
1) Угол поворота правого концевого сечения определяется как алгебраическая сумма взаимных углов поворота сечений на участках АВ, BC, CD, DE
.
Отсюда определим момент X
Х = 1178,125 Нм
2) Строим эпюру крутящих моментов MК (см. рис а)
Определяем опорные реакции. Отбросив опору (в данном случае защемление), заменим ее возможными реакциями. Т. к. все активные силы представляют собой крутящие моменты, то в опоре возникает только одно воздействие крутящий момент МЕ, который определим из уравнения равновесия:
; МЕ - 1900 + 1200 - 1700 + 1178,125 = 0
МЕ = 1900 - 1200 + 1700 - 1178,125 = 1221,875 Нм
При построении эпюры крутящих моментов МК применяем метод сечений дл каждого из четырех участков.
Для участка DE:
; Нм

Для участка CD:
; Нм
Для участка ВС:
; Нм
Для участка АВ:
; Нм
3) Определяем диаметр вала
Из эпюры максимальный МК = 1221,875 Нм на участке DE. На этом участке возникает максимальное касательное напряжение , где WP - момент сопротивления сечения
Приравнивая ф [ф], определим диаметр вала
0,043 м или 43 мм,
Согласно условиям задачи принимаем d = 45 мм.
4) Строим эпюру углов закручивания (см. рис. в) для всех участков по формуле
.
Выбираем начало координат в точке Е.
Участок DE:
Угол поворота сечения, взятого на расстоянии z от неподвижного сечения Е, будет
, где ;
при z = 0 ц = 0;
при z = a = 1,9 м
= - 0,071 рад.
Участок CD:
, где
при z = а = 1,9 м ц = - 0,071 рад;
при z = (a + b) = 3,1 м = - 0,046 рад.
Участок BC:
, где
при z = (а и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.