На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Использование межпредметных связей для формирования у учащихся основ диалектико-материалистического мировоззрения при изучении III-А и V-A групп периодической системы Д.И. Менделеева (азот, алюминий, бор, галлий). Их биохимическая роль и значение.

Информация:

Тип работы: Реферат. Предмет: Педагогика. Добавлен: 10.01.2010. Сдан: 2010. Страниц: 2. Уникальность по antiplagiat.ru: --.

Описание (план):


64
«Установление и использование межпредметных связей при изучении элементов III и V группы периодической системы Д.И. Менделеева»

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

ГЛАВА I. МЕЖПРЕДМЕТНЫЕ СВЯЗИ В КУРСЕ ШКОЛЬНОГО ПРЕДМЕТА ХИМИИ

1.1 Использование межпредметных связей для формирования у учащихся основ диалектико-материалистического мировоззрения

1.2 Пути и методы реализации межпредметных связей

1.3 Межпредметные связи в процессе изучения химии

ГЛАВА 2. СОСТОЯНИЕ ИЗУЧАЕМОГО ВОПРОСА В СОВРЕМЕННОЙ РОССИЙСКОЙ ШКОЛЕ

2.1 Элементы III-А группы периодической системы

2.1.1 Положение алюминия в периодической системе и строение его атома

2.1.2 Нахождение алюминия в природе, его получение и свойства

2.1.3 Важнейшие соединения алюминия

2.2 V-A группа. Азот

2.2.1 Некоторые соединения азота и их свойства

2.2.1.1 Оксиды азота

2.2.1.2 Азотная кислота

ГЛАВА 3. МЕЖПРЕДМЕТНЫЕ СВЯЗИ ПРИ ИЗУЧЕНИИ III И V ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ Д.И.МЕНДЕЛЕЕВА

3.1 III-А группа

3.1.1 Бор

3.1.1.1 Распространение в природе

3.1.1.2 Биохимическая роль

3.1.2 Алюминий

3.1.2.1 Распространение в природе

3.1.3 Галлий

3.1.3.1 Распространение в природе

3.1.3.2 Токсикологическая характеристика

3.2 V-A группа периодической системы

3.2.1 Круговорот азота

3.2.2 Соединения азота

3.2.2.1 Взаимодействие нитрат-иона с фауной и флорой

ГЛАВА 4. МОИ УРОКИ

4.1 Урок на тему «III-А группа периодической системы химических элементов Д. И. Менделеева»

4.1.1 Экологические аспекты преподавания темы «Азот. Соединения азота»

4.1.2 Урок по теме «Получение азотной кислоты»

4.1.3 Практическая работа на тему «Азотная кислота и ее соли»
ГЛАВА 5. ЗАДАЧИ И ТЕСТЫ
5.1 Задачи и тесты по теме «V-A группа ПС»
5. 2 Тесты
ЛИТЕРАТУРА
ВВЕДЕНИЕ

Актуальность выбранной темы не может вызывать сомнений, так как элементы III и V группы периодической системы Д.И. Менделеева применяются самым широким образом. Это и фармацевтическая, и горно-перерабатывающая промышленности, производство красителей, поверхностно-активных веществ, гербицидов, инсектицидов (применение в сельском хозяйстве) и др., применение в органическом синтезе, и прочее.
При разработке данной темы особое внимание следует уделить экологическому аспекту производства, применения и утилизации элементов и соединений на их основе. Реализацию целей школьного экологического образования можно осуществлять разными путями: это экологизация учебных дисциплин, создание интегрированных курсов, введение в практику обучения специального предмета, раскрывающего вопросы экологии и защиты окружающей среды от загрязнения.
Немаловажную роль в реализации экологического подхода играет включение в учебный процесс наряду с общеучебными также задач и тестовых заданий с экологическим содержанием [1].
Цели работы: проследить и изучить межпредметные связи при преподавании темы «Элементы III и V группы периодической системы Д.И. Менделеева» в школьном курсе химии, а также пути их реализации; на основе анализа как теоретического материала, так и экологических аспектов их использования, сформировать у учащихся экологическое понимание химических производств и проблемы загрязнения окружающей среды.

Гипотеза - Использование межпредметных связей при изучении темы «Элементы III и V группы периодической системы Д.И. Менделеева» с акцентированием на научные и экологические аспекты позволит сформировать положительную мотивацию к учению, развить у учащихся ценностную ориентацию и сделать очередной шаг в процессе формирования научного и экологического мировоззрения учащихся.

ГЛАВА I. МЕЖПРЕДМЕТНЫЕ СВЯЗИ В КУРСЕ ШКОЛЬНОГО ПРЕДМЕТА ХИМИИ

Межпредметные связи - это современный принцип обучения в средней школе. Он обеспечивает взаимосвязь предметов естественнонаучного и естественно-гуманитарного циклов и их связь с трудовым обучением школьников.

По определению Д. П. Ерыгина: «Межпредметные связи можно рассматривать как дидактическую систему, которая отражает в школьных курсах объективно существующие взаимосвязи, обеспечивает посредством согласованного взаимодействия ее учебных компонентов осуществления целенаправленного процесса обучения школьников».

Использование межпредметных связей - одна из наиболее сложных методических задач учителя химии. Она требует знания содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя химии с учителями других предметов.

Учитель химии разрабатывает индивидуальный план реализации межпредметных связей в курсе химии. Методика творческой работы учителя в этом плане проходит следующие этапы:

1. Изучение программы по химии, ее раздела «Межпредметные связи», программ и учебников по другим предметам, дополнительной научной, научно-популярной и методической литературы;

2. Поурочное планирование межпредметных связей с использованием курсовых и тематических планов;

3. Разработка средств и приемов реализации межпредметных связей на конкретных уроках (формулировка межпредметных познавательных задач, домашних заданий, подбор дополнительной литературы для учащихся, подготовка необходимых учебников и наглядных пособий по другим предметам, разработка методических приемов их использования);

4. Разработка методики подготовки и проведения комплексных форм организации обучения (обобщающих уроков с межпредметными связями, комплексных семинаров, экскурсий, занятий кружка, факультатива по межпредметным темам и т.д.);

5. Разработка приемов контроля и оценки результатов осуществления межпредметных связей в обучении (вопросы и задания на выявление умений учащихся устанавливать межпредметные связи).

Планирование межпредметных связей позволяет учителю успешно реализовать их методологические, образовательные, развивающие, воспитательные и конструктивные функции; предусмотреть всё разнообразие их видов на уроках, в домашней и внеклассной работе учащихся.

Для установления межпредметных связей необходимо осуществить отбор материалов, то есть определить те темы химии, которые тесно переплетаются с темами из курсов других предметов.

Курсовое планирование предполагает краткий анализ содержания каждой учебной темы курса с учетом внутрипредметных и межпредметных связей.


1.1 Использование межпредметных связей для формирования у учащихся основ диалектико-материалистического мировоззрения

Использование опорных знаний других предметов при изучении отдельных тем курса химии - важнейшее средство формирования у учащихся диалектико-материалистического мировоззрения, целостного представления о явлениях природы и взаимосвязи между ними.
Решение этой задачи успешно осуществляется при совместной согласованной работе учителей различных дисциплин: природоведения, химии, физики, географии, биологии, математики, обществоведения, истории и др. Рассмотрим те межпредметные связи курса химии, которые касаются формирования основ научно-материалистического мировоззрения учащихся.
После изучения темы «Вода. Растворы. Основания» предлагаем учащимся выполнить самостоятельные практические работы. При этом используем вещества, которые изучались в курсе природоведения («Воздух», «Вода» и др.), в курсе ботаники («Дыхание семян», «Дыхание листьев»), а также в курсе физики. Даем задание осуществить превращения:
C CO2 H2CO3 Na2CO3
Практические работы такого характера раскрывают взаимосвязь между различными классами химических соединений, развивают идею о познаваемости мира.
Исходя из превращений, осуществляемых при переходе от одних веществ к другим, даем определение понятия «развитие» (переход от одного качественного состояния к другому).
Не менее важно и то, что межпредметные связи позволяют более целесообразно планировать изучение материала, экономить время, при этом знания по другим предметам конкретизируются, углубляются, обобщаются.
1.2 Пути и методы реализации межпредметных связей

Вопрос о путях и методах реализации межпредметных связей - это один из аспектов общей проблемы совершенствования методов обучения. Отбор методов обучения учитель производит на основе содержания учебного материала и на подготовленности учащихся к изучению химии на уровне межпредметных связей.
На первых этапах обучения учащихся приемам установления межпредметных связей преобладает объяснительно-иллюстративный метод. Учитель весь материал межпредметного содержания объясняет сам. Когда у учащихся сформируются умения работы с материалом межпредметного содержания, можно применять репродуктивный и частично-поисковый методы и творческие межпредметные задачи.
Средства реализации межпредметных связей могут быть различны:
вопросы межпредметного содержания: направляющие деятельность школьников на воспроизведение ранее изученных в других учебных курсах и темах знаний и их применение при усвоении нового материала.
межпредметные задачи, которые требуют подключения знаний из различных предметов или составлены на материале одного предмета, но используемые с определенной познавательной целью в преподавании одного другого предмета. Они способствуют более глубокому и осмысленному усвоению программного материла, совершенствованию умений выявить причинно-следственные связи между явлениями.
домашнее задание межпредметного характера - постановка вопросов на размышление, подготовка сообщений, рефератов, изготовление наглядных пособий, составление таблиц, схем, кроссвордов, требующих знаний межпредметного характера.
межпредметные наглядные пособия - обобщающие таблицы, схемы, диаграммы, плакаты, диаграммы модели, кодопозитивы. Они позволяют учащимся наглядно увидеть совокупность знаний из разных предметов, раскрывающую вопросы межпредметного содержания.
химический эксперимент - если предметом его являются биологические объекты и химические явления, происходящие в них.
Использование межпредметных связей вызвало появление новых форм организации учебного процесса: урок с межпредметными связями, комплексный семинар, комплексная экскурсия, межпредметная экскурсия и др.
Уроки с межпредметным содержанием могут быть следующих видов: урок-лекция; урок-семинар; урок-конференция; урок-ролевая игра; урок-консультация и др.
уроки межпредметного обобщения или тематические задания - проблема педагогики и методики как соединить знания с практической полезной деятельностью. Научить применять знания.
Суть тематического планирования заключается в следующем: группам учащихся дается задание разработать рекомендации по использованию удобрений, веществ, реакций относительно данной местности. Эти задания имеют МПС и готовятся совместно с учителями биологии, географии, черчения, рисования - это бинарные уроки.
Ход проведения: группа из 4-6 человек выбирает руководителя проекта, специалистов (биолог, агроном, чертежников, художник-оформитель), определяет задания каждому ученику. Группы собираются и отчитываются о работе.
Каждой группе дается своеобразное домашнее задание, которое будет завершено защитой своих работ. Вначале такого урока - краткая беседа учителя, в ходе которой ставится цель, представляются учащиеся, определяется порядок защиты. Затем идут выступление групп - в виде краткого отчета о проделанной работе (демонстрация рисунков, таблиц). Далее идет обсуждение выступлений; учитель продумывает со своими коллегами трудовое задание. Обязательно прослеживается связь с окружающей средой.
По этим урокам можно сделать вывод:
1. Все уроки связаны педагогической логикой.
2. Строго выполняется учителем тема по программе.
3. Включено обязательно решение задач.
4. Главное достоинство - ученики учатся учиться по указанию учителя.
5. Но самое главное - все задания выполняются самостоятельно.
1.3 Межпредметные связи в процессе изучения химии

Отражение межпредметных связей и определение содержания в программах: а) для обычных классов без специализации - программа курса химии для 8-11 классов средней общеобразовательной школы - разработана в лаборатории химического образования Института общеобразовательной школы РАО - Москва “Просвещение” 1993 год, тема “Основания” - 2 часа. б) программа курса неорганической химии для 8-9 классов химико-биологического профиля (авторы: Н.Е. Кузнецова, Г.П. Никифорова, И.М. Титова, А.Ю. Жегин) на тему “Элементы III и V группы” отводится 6 часов, является своевременным и важным положением в системе обучения учащихся, поскольку методически обоснованное осуществление внутри- и межпредметных связей в процессе изучения школьных дисциплин способствует повышению качества знаний учащихся, развитию их мыслительной деятельности.
Реализация внутри- и межпредметных связей при изучении химии является одной из форм логического повторения, углубления и совершенствования приобретенных знаний.
Поскольку внутри- и межпредметные связи обеспечивают привлечение учащимися на уроках знаний из области других предметов, важно с учетом требований программ выделить наиболее общие, устойчивые и долговременно действующие внутри- и межпредметные понятия. Примером таких понятий могут быть понятия о составе, строении, химических свойствах и биологических функциях веществ. При отборе и использовании межпредметной информации важно не нарушить логику построения учебных предметов и не допускать перегрузки их содержания.
Способы привлечения знаний из других предметов различны. Можно предложить учащимся при подготовке к занятиям восстановить в памяти ранее изученные вопросы. В отдельных случаях учитель при изложении нового материала сам напоминает сведения, полученные при изучении других предметов, включая при этом учащихся в активную беседу. Опыт учителей-методистов показывает, что установление взаимосвязей между предметами успешно проходит при включении в содержание урока (или в задание на дом) примеров и задач межпредметного характера.
Для того, чтобы успешно реализовать внутри- и межпредметные связи в учебной деятельности, учитель химии должен, прежде всего овладеть содержанием соответствующих дисциплин.
Конкретизация использования внутри- и межпредметных связей в процессе обучения достигается с помощью поурочного планирования. Последнее осуществляется с учетом вида урока:
фрагментальный, когда лишь фрагменты, отдельный этап урока, требует реализации связей с другими предметами;
узловой, когда опора на знания из других предметов составляет необходимое условие усвоения всего нового материала или его обобщения в конце учебной темы;
синтезированный, который требует синтеза знаний из разных предметов на протяжении всего урока и специально проводится для обобщения материала ряда учебных тем или всего курса.
Поурочный план-разработка показывает, когда, на каком этапе урока и какими способами включаются знания из других курсов в изучении нового или закрепления учебного материала. Особенно необходима тщательная разработка обобщающего урока с внутри- и межпредметными связями. Выделение таких уроков производится на основе тематического планирования. Поурочное планирование может быть выполнено в виде плана конспекта или в виде таблицы
 этапы
урока
вопросы МП содержания
методы и приемы
средства наглядности
внутрипредметные и межпредметные связи
 
 
 
 
 
Составляя поурочные планы, учителю важно знать, что учащиеся уже усвоили из необходимых опорных знаний на уроках по другим предметам, согласовать с учителями смежных предметов постановку вопросов и заданий, чтобы избежать дублирования и достигнуть развития общих идей и понятий, их углубления и обогащения. Этому помогает взаимопосещение уроков и изучение составляемых коллегами планов реализации внутри- и межпредметных связей.
Таким образом, планирование составляет необходимое и существенное условие подготовки учителя к эффективному осуществлению внутри- и межпредметных связей и является одним из средств их реализации в практике обучения школьников [2, 3].

ГЛАВА 2. СОСТОЯНИЕ ИЗУЧАЕМОГО ВОПРОСА В СОВРЕМЕННОЙ РОССИЙСКОЙ ШКОЛЕ

2.1 Элементы III-А группы периодической системы

Алюминий Al (лат. Aluminium, от лат. alumen -- квасцы). Аl-- элемент III группы 3-го периода периодической системы Д. И. Менделеева, п. н. 13, атомная масса 26,9815, имеет один стабильный изотоп 27Al (100 %). Металлический Аl был получен в 1827г. Вёлером. По содержанию в земной коре (8,8 %) Аl занимает 3-е место после О и Si, с которыми Аl (в виде различных алюмосиликатов) составляет более 82% массы земной коры. В свободном виде не встречается. Основное сырье для производства Аl - бокситы. Аl - серебристо-белый металл, легкий, прочный, пластичный, ковкий, обладает высокой электро- и теплопроводимостью, высокой химической активностью. В соединениях А. проявляет степень окисления +3. А. легко соединяется о кислородом воздуха, покрываясь плотной пленкой оксида Al2O3, это обусловливает высокую коррозионную стойкость; концентрированная HNO3 на Аl не действует. Аl легко растворяется в щелочах, разбавленных НС1 и H2SO4. Гидроксид Аl (и Аl2О3) амфотерен: с кислотами водных растворах он дает соли, содержащие гидратированный ион [Al(H2O)6]з+, со щелочами -- алюминаты. Аl получают электролизом Аl2О3 (из боксита), растворенного в расплавленном криолите Na3AlF6, Аl применяют для производства легких сплавов (дуралюмин, силумин) в самолетостроении, автомобилестроении, при строительстве зданий, для изготовления химической аппаратуры, электрических проводов, конденсаторов, как материал для ядерных реакторов и др. Аl служит восстановителем при получении ряда металлов. Применяются различные соединения Al -- алюминия оксид, хлорид алюминия АlС13 или водный А1С13 . 2О как катализатор в органическом синтезе, сульфат алюминия А12(SО4)3 18H2O и алюмокалиевые квасцы KAl(SO4)2 12Н2О -- для очистки воды, при крашении тканей, для дубления кож и в производстве бумаги. В строительстве и архитектуре для защиты от коррозии и в декоративных целях применяют серебряную краску -- смесь алюминиевого порошка с минеральным маслом. Алюминийорганические соединения используют при синтезе других металлоорганических соединений; соединения Аl с алкилами применяют как катализаторы при полимеризации олефинов.

Бор В - элемент III группы 2-го периода п.с. В природе встречается в виде борной кислоты и различных минералов. Бор является сильным восстановителем. Гидриды бора применяют в топливе для ракет, как катализаторы при получении полимеров, для покрытия металлов бором, в металлургии, в ядерной промышленности.
Галлий Ga - элемент III группы п.с. Химически активен, применяется в качестве модифицирующих присадок в сплавах, в полупроводниковой промышленности.
Иттрий Y - элемент III группы 5-го периода п.с., в природе встречается вместе с лантаноидами. Иттрий используется в атомной технике и авиации.
Скандий Sс - элемент III группы 4-го периода п.с. Скандий содержится в виде примесей во многих минералах, химически активен. Применяют скандий в основном в виде сплавов с различными металлами, в ядерной технике, металлургии, медицине и пр.
Лантан La - элемент III группы 6-го периода п.с. В природе La встречается в виде сложного по составу минерала монацита.
Лантаноиды - 4f-семейство из 14 элементов VI периода п.с. В природе лантаноиды сопутствуют друг другу. Все лантаноиды - металлы серебристо-белого цвета, пластичны и легко поддаются ковке, литью. Лантаноиды химически активны, разлагают воду, реагируют с кислотами. Лантаноиды находят очень широкое применение - в изготовлении лаков и красок, в производстве кожи, в текстильной промышленности, в радиоэлектронике и пр.
Таллий Tl - элемент III группы 6-гопериода п.с., относится к рассеянным элементам, легко разлагает кислоты. Производство таллия связано с комплексной переработкой сульфидных руд цветных металлов. Токсичен.
Актиний Ас - радиоактивный элемент III группы п. с. Период полураспада Ас составляет 22 года, испускает -частицы (98 %) и -частицы. Получают облучением радия нейтронами. Ас - металл серебристо-белого цвета, в соединениях проявляет с.ок. +3, по химическим свойствам близок к лантану. Ас - опасный радиоактивный яд.
Актиноиды - 5f-семейство элементов 7 периода п. с., все радиоактивны [2].
К III группе периодической системы относятся следующие элементы: бор В, алюминий Al, скандий Sc, галлий Ga, иттрий Y, лантан La (лантаноиды), таллий Tl, актиний Ac (актиноиды).
Данная тема изучается в школьной программе в 9 классе по учебнику Ф. Г. Фельдмана и Г. Е. Рудзитиса [3]. На изучение элементов III группы отводится лишь 2 часа.
В школьном учебнике Ф. Г. Фельдмана и Г. Е. Рудзитиса этой теме посвящен лишь один параграф, к тому же тема освещена не лучшим образом. Авторы учебника подробно рассматривают лишь один из элементов III группы - алюминий. В этом параграфе рассматриваются следующие подпункты.
2.1.1 Положение алюминия в периодической системе и строение его атома
Алюминий находится в главной подгруппе
III группы. Схема расположения по энергетическим уровням следующая:
+3Al 2e-, 8e-, 3e-
Так как у атомов алюминия на внешнем уровне 3 электрона, то алюминий в соединениях проявляет степень окисления 4-3.
К такому же выводу приходим, руководствуясь представлениями о характере движения электронов в атомах и расположении их не только по энергетическим уровням, но и по подуровням. В атоме алюминия легко происходит распаривание 3s2-электронов и один электрон переходит 3p-орбиталь:
В результате получаются три неспаренных электрона. Ответьте на вопрос 1 (с. 138 [4]).
2.1.2 Нахождение алюминия в природе, его получение и свойства
Алюминий -- третий по распространенности элемент в земной коре. Он встречается только в соединениях. Важнейшие из них указаны на схеме 19.

Схема 19
Окрашенные кристаллы Al2O3 красного цвета -- рубины, синего цвета - сапфиры.
Получение
Немецкий химик Ф. Вёлер в 1827 г. получил алюминий при нагревании хлорида-алюминия со щелочными металлами калием или натрием без доступа воздуха.
AlCl3 +3K 3KCl + Al
Для промышленного получения алюминия эти методы экономически невыгодны, поэтому был разработан электрохимический метод получения алюминия из бокситов.
Физические свойства
Алюминий -- серебристо-белый металл, легкий ( = 2,7 г/cм3), плавится при 660 °С. Он очень пластичен, легко вытягивается в проволоку и прокаливается в листы и фольгу. По электрической проводимости алюминий уступает лишь серебру и меди (она составляет 2/3 от электрической проводимости меди).
Химические свойства
В электрохимическом ряду напряжения алюминий помещается за самыми активными металлами. Однако из повседневного опыта известно, что на алюминиевые изделия (посуду и т. д.) не действует ни кислород, ни вода даже при температуре ее кипения. На алюминий не действует также концентрированная холодная азотная кислота. Это объясняется наличием на поверхности алюминия тонкой оксидной пленки, которая предохраняет его от дальнейшего окисления. Если поверхность алюминия потереть солью ртути, то происходит реакция:
2А1 + 3HgCl2 2А1С13 + 3Hg
Выделившаяся ртуть растворяет алюминий, и образуется его сплав с ртутью -- амальгама алюминия. На амальгамированной поверхности пленка не удерживается, поэтому алюминий реагирует с водой при обычных условиях (рис. 46):
2А1 + 6НОН 2А1(ОН)3 + 3Н2
При повышенной температуре алюминий реагирует со многими неметаллами и сложными веществами без амальгамирования:
Применение
Алюминий применяют для производства различных сплавов. Наибольшее распространение имеют дюралюмины, содержащие медь и магний, и силумины -- сплавы алюминия с кремнием. Основные преимущества этих сплавов--легкость и высокая прочность. Упомянутые сплавы широко используют в авиа-, авто-, судо- и приборостроении, в ракетной технике и в строительстве. В виде чистого металла алюминий идет на изготовление электрических проводов и различной химической аппаратуры.
Алюминий используют также для алитирования, т. е. насыщения поверхностей стальных и чугунных изделий алюминием с целью защиты их от коррозии.
На практике часто используют термит (смесь оксида Fе3O4 с порошком алюминия). Если эту смесь поджечь (с помощью магниевой ленты), то происходит бурная реакция с выделением большого количества теплоты:
8Al + 3Fe3O4 4Al2O3 + 9Fe
Этот процесс используют при так называемой термитной сварке, а также для получения некоторых металлов в свободном виде.
Ответьте на вопросы 2--6 (с. 138). Решите задачи 1 - 2 (с. 138). [4]
2.1.3 Важнейшие соединения алюминия
Оксид алюминия
Аl2О3 можно получить следующими способами:
1. Непосредственным сжиганием порошка металлического алюминия (вдуванием порошка алюминия в пламя горелки):
4Al + 3O2 2А12O3

2. Путем превращения по приведенной ниже схеме:
Оксид алюминия -- твердое, тугоплавкое (темп. пл. 2050 °С) вещество белого цвета.
По химическим свойствам это амфотерный оксид (I, § 37). Реагирует с кислотами, проявляет свойства основных оксидов:
А12O3 + 6НС1 2А1С13 + 3Н2O
Al2O3 + 6H+ +6С1- 2Al3+ + 6С1- + 3Н2O
А12O3 + 6Н+ 2A13+ + 3Н2O
Оксид алюминия реагирует со щелочами и проявляет свойства кислотных оксидов. Причем при сплавлении образуются соли метаалюминиевой кислоты НА1O2, т. е. мета-алюминаты:
Al2O3 + 2NaOH 2NaA102 + H20
В присутствии воды реакция протекает иначе:
А12О3 + 2NаОН + Н2O 2[NaA1O2 . H2O]
Это объясняется тем, что в водном растворе алюминат натрия NaA1O2 присоединяет одну или две молекулы воды, что можно изобразить так:
а) NaA1O22О, или NaH2A1O3; б) NaA1O2-2H2O, или NaAl(OH)4.
Гидроксид алюминия
Гидроксид алюминия А1(ОН)3 получают при взаимодействии раствора щелочи с растворами солей алюминия (раствор щелочи нельзя брать в избытке):
АlCl3 + NaOН Al(OH)3 + 3NaCl
A13+ + 3Cl- + 3Na+ + 3OH- Al(OH)3 + 3Na+ + 3С1-
Аl3+ + 3ОН- А1(ОН)3
Если белую желеобразную массу гидроксида алюминия выделить из раствора и высушить, то получается белое кристаллическое вещество, практически не растворяющееся в воде.
Гидроксид алюминия (как и его оксид) обладает амфотерными свойствами. Подобно всем основаниям гидроксид алюминия реагирует с кислотами. При сплавлении гидроксида алюминия со щелочами образуются метаалюминаты, а в водных растворах -- гидраты метаалюминатов:
А1(OH)3 + NaOH NaА1O2 + 2Н2O
А1(OH)3 + NaOH NaH2А1O3 + Н2O
Соли алюминия получают в основном при взаимодействии металлического алюминия с кислотами. По физическим свойствам это твердые кристаллические вещества, хорошо растворимые в воде. Химические свойства солей алюминия аналогичны свойствам других солей ([3], с. 98--99). Так как соли алюминия образованы слабым основанием и сильной кислотой, то они в водных растворах подвергаются гидролизу (с. 18).
Ответьте на вопросы 7--10 (с. 138). Решите задачу 3 (с. 138 [4]).
Генетическая связь между алюминием и его важнейшими соединениями (схема 20).
Выполните упражнение 11.
Далее в учебнике по этой теме приводятся задачи на закрепление материала. Также в учебнике приводится лабораторный эксперимент (с. 139) [4].
Таким образом, из вышеизложенного материала можно сделать вывод, что в школьной программе на изучение данной темы отводится очень мало часов, и, кроме этого, практически нет сведений об экологических аспектах этой темы.
Азот образует ряд оксидов, формально отвечающих всем возможным степеням окисления от +1 до +5: N2O, NО, N2O3, NO2, N2O5, однако всего два из них - оксид азота(II) и оксид азота(IV) - не только устойчивы при обычных условиях, но и активно задействованы в природном и промышленном круговоротах азота.

2.2.1 Некоторые соединения азота и их свойства

1.2.1.1. Оксиды азота

N2+1O - оксид азота(I), закись азота, «веселящий» газ, несолеобразующий оксид. Получают N2O разложением аммиачной селитры:
N2O имеет слабый приятный запах и сладковатый вкус. С кислородом, водой, растворами кислот и щелочей не реагирует. Разлагается на элементы при температуре выше 500 °С, иными словами, достаточно устойчив.
Строение: у кислорода 2 неспаренных электрона, у азота 3 - образуется двойная связь и один неспаренный электрон в остатке. Можно предположить, что молекулы NO будут спариваться и образовывать димерную молекулу ONNO. Строение молекулы: линейная молекула О=N=N, в которой центральный атом N четырехвалентен. Он образует две двойные связи: одну - с кислородом по типичной схеме создания ковалентной связи (два электрона азота, два электрона кислорода), другую - с атомом азота (который два из своих трех неспаренных электронов спаривает и образует за счет этого пустую орбиталь), одна из связей ковалентная, вторая донорно-акцепторная (рис. 1).
Установка для получения оксида азота(I) состоит из штативов, пробирки, пробки с газоотводной трубкой, кристаллизатора, цилиндра и спиртовки (рис. 2). В пробирку помещают NH4NO3, закрывают пробкой с газоотводной трубкой и нагревают. Газ собирают в цилиндр, наполненный водой.
Рис. 1. Молекула оксида азота(I) - N2O
Рис. 2. Получение оксида азота(I) в лаборатории
Оксид N2O разлагается при нагревании:
Оксид N2O реагирует с водородом:
N+2O - оксид азота(II), несолеобразующий оксид. Получают NO реакцией меди с кислотой HNO3 (разб.) (рис. 3).
Кристаллическая решетка молекулярная; молекула легкая, слабополярная (электроотрицательность кислорода немного выше, чем у азота). Можно предположить, что температуры плавления и кипения будут низкими, но выше, чем у азота, т. к. полярность молекулы дает возможность подключать электростатические силы притяжения к просто межмолекулярным силам. Образование димера тоже способствует повышению температуры кипения. Строение молекулы позволяет предположить и невысокую растворимость в воде. Оксид азота(II) не имеет ни цвета, ни запаха.
Рис. 3. Получение оксида азота(II) в лаборатории
Для получения оксида азота(II) в пробирку помещают немного медных стружек и заливают разбавленную азотную кислоту. Пробирку закрывают пробкой с газоотводной трубкой и укрепляют в штативе. Конец газоотводной трубки опускают в кристаллизатор с водой и далее в цилиндр (рис. 3). При нагревании выделяется NO. NO легко окисляется кислородом воздуха, т. е. действует как восстановитель:
В реакции с сернистым газом оксид NO - окислитель:
N+22O3 - оксид азота(III), азотистый ангидрид (ему соответствуют азотистая кислота HNО2 и соли нитриты); это кислотный оксид, для него характерны все свойства кислотных оксидов. Получают оксид N2O3 по реакции:
NO2 + NO N2O3.
N+4O2- оксид азота(IV), диоксид азота, бурый газ (токсичен).
Рассмотрим электроны азота в молекуле NО. Это неспаренный электрон, свободная пара электронов и еще два электрона на связи с кислородом - всего пять. А у атома кислорода, «выходящего на связь», шесть электронов на четырех орбиталях. Если расположить их по два, то одна орбиталь останется свободной. Именно ее и занимает пара электронов атома азота (рис. 4, 5).
Рис. 4. Схема электронного строения молекулы NO2 (первый вариант). (Точками обозначены электроны атомов О, крестиками - электроны атома N)
Рис. 5. Схема электронного строения молекулы NO2 (второй вариант). (Звездочкой обозначен возбужденный атом O, стрелкой - донорно-акцепторная связь.
Раз пара электронов, находящаяся на s-орбитали, «пошла на связь», она просто обязана подвергнуться гибридизации. Возникает вопрос: какой тип гибридизации использует атом? Ответ: три электронные орбитали азота находятся в состоянии sp2-гибридизации. Молекула NO2 угловая, угол 134° (угол больше 120° потому, что 1 электрон отталкивает от себя электроны связи слабее, чем пара электронов) (рис. 6, 7).
Кристаллическая решетка молекулярная, однако, поскольку сама молекула тяжелее NO и склонность к димеризации у нее заметно выше, то плавиться и кипеть это вещество должно при заметно более высоких температурах. Температура кипения составляет 21 °С, поэтому при обычных условиях - 20 °С и 760 мм рт. ст. - оксид азота(IV) жидкий.
Оксид азота (IV) в воде растворяется, одновременно с ней реагируя, и получается при этом сразу две кислоты.
Рис. 6. Молекула NO2 -- вид «сверху»
Рис. 7. Молекула NO2 - вид «сбоку», со стороны донорно-акцепторной связи. (Второй атом кислорода не виден за орбиталями атома азота. Заштрихованные кружки - это гибридизованные орбитали атомов, направленные к читателю.)
Оксид азота(IV) имеет и характерный резкий запах, и рыжевато-бурый цвет, оттенки которого отличаются друг от друга в зависимости от концентрации. Именно за этот цвет выбросы оксидов азота в атмосферу называют «лисьими хвостами» [4].
Реакции оксида NO2
1) С водой:
2NO2 + Н2O = НNO3 + НNO2.
2) С щелочами:
2NO2 + 2NaOH = NаNО3 + NаNО2 + Н2O.
3) Димеризация при охлаждении:
При температуре -11 °С равновесие полностью смещено вправо, а при +140 °С - целиком влево.
N+52O5 - оксид азота(V), азотный ангидрид, кислотный оксид, сильный окислитель. Оксид N2O5 легко разлагается:
2N2O5 = 4NO2 + O2.

2.2.1.2 Азотная кислота

Из гидроксидов азота мы рассмотрим наиболее многотоннажный - азотную кислоту.

Молекула азотной кислоты полярна (из-за разной электроотрицательности кислорода и водорода, потому что азот как бы скрыт внутри молекулы) и асимметрична. Все три имеющихся в ней угла между связями азота с кислородом разные. Формальная степень окисления азота высшая (+5). Но при этом только 4 связи у атома азота с другими атомами - валентность азота равна 4.

Строение молекулы легче понять, если рассмотреть процесс ее получения. Азотная кислота получается при реакции оксида азота(IV) с водой (в присутствии кислорода): две молекулы NO2 одновременно «атакуют» молекулу воды своими неспаренными электронами, в результате связь водорода с кислородом разрывается не как обычно (пара электронов у кислорода и «голый протон»), а одной молекуле NO2 достается водород со своим электроном, другой - радикал ОН (рис. 8). Образуются две кислоты: обе кислоты сильные, обе быстро отдают свой протон ближайшим молекулам воды и остаются в итоге в виде ионов NO2- и NO3-. Ион NO2- нестоек, две молекулы НNО2 разлагаются на воду, NО2 и NО. Оксид NO реагирует с кислородом, превращаясь в NО2, и так до тех пор, пока не получится одна только азотная кислота.

Рис. 8. Схема образования молекул азотной и азотистой кислот. (Черный шар - атом N, большие белые шары - атомы O, маленькие белые шарики - атомы H.)

Формально выходит, что с одним атомом кислорода атом азота связан двойной связью, а с другим - обычной одинарной связью (этот атом кислорода связан еще и с атомом водорода). С третьим атомом кислорода азот в HNO3 связан донорно-акцепторной связью, причем в качестве донора выступает атом азота. Гибридизация атома азота при этом должна быть sр2 из-за наличия двойной связи, что определяет структуру - плоский треугольник. Реально получается, что действительно фрагмент из атома азота и трех атомов кислорода - плоский треугольник, только в молекуле азотной кислоты этот треугольник неправильный - все три угла ОNО разные, следовательно, и разные стороны треугольника. Когда же молекула диссоциирует, треугольник становится правильным, равносторонним. Значит, и атомы кислорода в нем становятся равноценными. Одинаковыми становятся и все связи.

Физические свойства азотной кислоты

Соединение ионизированное, пусть даже и частично, сложно перевести в газ. Таким образом, температура кипения должна бы быть достаточно высокой, однако при такой небольшой молекулярной массе температура плавления высокой быть не должна. Следовательно, агрегатное состояние при 20°С жидкое. Что касается растворимости, то, как и многие другие полярные жидкости, азотная кислота легко смешивается с водой в любых соотношениях. Чистая азотная кислота бесцветна и не имеет запаха. Однако из-за разложения на кислород и оксид азота(IV), который в ней же и растворяется, можно сказать, что обычная концентрированная азотная кислота имеет желто-бурый цвет и характерный для NO2 резкий запах. Посмотрим, как влияет строение молекулы азотной кислоты на ее химические свойства.

НNО3 - cильный окислитель
При взаимодействии НNО3 с металлами (М) водород не выделяется:
М + НNО3 соль + вода + газ.
Смесь HNO3 (конц.) с HCl (конц.) в объемном соотношении 1:3 (1V HNO3 + 3V HCl) называют «царской водкой».
Au + HNO3 + 3HCl = AuCl3 + NO + 2H2O.
Азотная кислота не реагирует с другими кислотами по типу реакций обмена или соединения. Однако вполне способна реагировать как сильный окислитель. В смеси концентрированных азотной и соляной кислот протекают обратимые реакции, суть которых можно обобщить уравнением:
Образующийся атомарный хлор очень активен и легко отбирает электроны у атомов металлов, а хлорид-ион образует устойчивые комплексные ионы с получающимися ионами металлов. Все это позволяет перевести в раствор даже золото. Концентрированная H2SO4 как сильное водоотнимающее средство способствует реакции разложения азотной кислоты на оксид азота(IV) и кислород. Азотная кислота - одна из сильных неорганических кислот и, естественно, со щелочами реагирует. Реагирует она также и с нерастворимыми гидроксидами, и с основными оксидами [4].
При изучении темы «Азот. Соединения азота» пользуются учебником химии под редакцией Г.Е. Рудзитис, Ф.Г. Фельдман, также учебником за 9 класс под редакцией Н.С. Ахметова. Дидактическим материалом служит книга по химии для 8-9 классов под редакцией А. М. Радецкого, В. П. Горшкова; используются задания для самостоятельной роботы по химии за 9 класс под редакцией Р.П. Суровцева, С.В. Софронова; используется сборник задач по химии для средней школы и для поступающих в вузы под редакцией Г.П. Хомченко, И.Г. Хомченко. На изучение этой темы отводится 7 ч [4, 5].

ГЛАВА 3. МЕЖПРЕДМЕТНЫЕ СВЯЗИ ПРИ ИЗУЧЕНИИ III И V ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ Д.И.МЕНДЕЛЕЕВА

3.1 III-А группа

3.1.1 Бор

3.1.1.1 Распространение в природе

Бор никогда не встречается в природе в свободном состоянии, он всегда оказывается связанным с кислородом. В этой форме он присутствует в борной кислоте Н3BO3, которая содержится в воде горячих источников вулканических местностей. Кроме того, в природе распространены многочисленные соли борной кислоты. Из этих солей наиболее известна бура или тинкал Na2B4О7 . 10Н2О. Техническое значение имеют борацит 2Mg3B8O15 . MgCl2, пандермит Са2B6О11 .2О, колеманит Са2B6О11 .2О, кернит Na2B4О7 .2О.

Необходимо указать и следующие минералы, которые являются производными борной кислоты: борокальцит СаB4О7 .2О, борнонатрокальцит NaСаB5О9 .2О, гидроборацит MgC и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.