Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Понятие пространственного мышления. Роль векторного пространства в формировании пространственного мышления учащихся основной школы. Методические аспекты развития пространственного мышления при изучении элементов геометрии и построении модели к задачам.

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 22.05.2009. Сдан: 2009. Страниц: 3. Уникальность по antiplagiat.ru: --.

Описание (план):


54
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
АСТРАХАНСКОЕ ПЕДАГОГИЧЕСКОЕ УЧИЛИЩЕ №1
КУРСОВАЯ РАБОТА
НА ТЕМУ:
«ФОРМИРОВАНИЕ ПРОСТРАНСТВЕННОГО МЫШЛЕНИЯ
ПРИ ИЗУЧЕНИИ ВЕКТОРНОГО ПРОСТРАНСТВА
У УЧАЩИХСЯ ОСНОВНОЙ ШКОЛЫ»
Выполнила: студентка гр. 3В
Джоржанова К.К
Проверила:
преподаватель алгебры
Никулина И.Е.
АСТРАХАНЬ 2006
СОДЕРЖАНИЕ
Введение
Глава I Теоретические основы формирования пространственного мышления у учащихся основной школы при изучении векторного пространства
1.1 Понятие пространственного мышления
1.2 Векторное пространство
1.3 Роль векторного пространства в формировании пространственного мышления учащихся основной школы
Глава II. Методика формирования пространственного мышления учащихся основной школы при изучении векторного пространства
2.1 Методические аспекты развития пространственного мышления как элемента образного
2.2 Методика формирования пространственного мышления учащихся основной школы при изучении элементов геометрии
2.3 Методика формирования пространственного мышления учащихся основной школы при построении модели к задачам
Заключение
Список литературы
Введение
Задача развития пространственного мышления учащихся основной школы имеет особую значимость, она должна с первых дней пребывания детей в школе, т. к. развитие мышления, а в особенности наглядно-образного и пространственного тесно связано с интеллектом человека. Человеческое существо с самого своего рождения погружено в социальную среду, которая воздействует на него в той же мере, что и среда физическая. Более того, подобно тому, как это делает физическая среда, общество не просто воздействует на индивида но непрестанно трансформирует самого его структуру, ибо оно не только принуждает его к принятию фактов, но и представляет ему вполне установившиеся системы знаков, изменяющиеся мышление индивида, предлагает ему новые ценности и возлагает на него бесконечный ряд обязанностей. Это позволяет сделать очевидный вывод, что социальная жизнь трансформирует интеллект через воздействие трёх посредников: языка (знаки), содержание взаимодействий субъекта с объектами (индивидуальные ценности) и правил, предписанных мышлению (коллективные логические или дологические нормы). (Пиаж, с. 213)
Поэтому в настоящее время интерес к развитию мышления и как частного случая образно-пространственного мышления значительно возрос. Но он имеет недолгую историю. Проблеме пространственного мышления в последнее время в психологии стало уделяться значительно больше внимания, чем было раньше. Ему посвящены работы А. Н. Леонтьева, С. Д. Смирнова, А. Р. Лурия, А. А. Госпеева, В. М. Гордона, И. С. Якиманской, Е. Н. Кабановой-Меллер, М. В. Рыжика, Л. М. Фридмана и другие.
В них рассматриваются вопросы значения пространственного мышления человека для формирования понятий и для продуктивной деятельности, возрастные и индивидуальные особенности образного и пространственного мышления, возможности его при решении разнообразных проблем; приводятся феноменальные случаи образного, пространственного мышления, изучаются виды образов.
Психологами изучалось функционирование воображения и роль его в творческой деятельности человека, виды воображения и приёмы создания новых образов. Этому посвящены работы Л. С. Выготского, И. В. Страхова, О. Н. Дьяченко, Ц. П. Короленко, С. В. Фатеева и другие. В них подчёркивается связь воображения с целеполаганием, отмечается значение практической деятельности для его развития.
Философскому осмыслению образного мышления, выявлению значения знаков в познавательной деятельности человека, обсуждению связи и образу посвящены работы И. И. Мантатова, В. С. Тюхтипа, А. В. Славина, Н. Г. Салминой.
Большое значение в раскрытии механизмов создания образов, в выявлении закономерностей зрительного восприятия имеют работы по визуальному мышлению психологов Р. Арнхейма, И. Рока, Ж. Пиаже, В. В. Сташка, Р. Франсе и др.
Среди части педагогов математиков имеет осознание важности пространственного мышления в усвоении математики. Об этом можно найти явные или неявные высказывания у Ж. Адашора, А. Д. Александрова, Р. Куранта, Д. Пельберта, В. М. Тихомирова.
Различные аспекты пространственного мышления при изучении математики (от научно-популярных до методических разработок)исследовали Ю. П. Попов, Ю. В. Пухначёв, М. И. Башмаков, В. Г. Болтяский, С. Б. Вергенко, Г. Д. Глейзер, В. А. Далингер, Г. Н. Никитина, А. Пардала.
В настоящее время имеет место противоречие между наличием разработанных методов и приёмов формирования пространственного мышления в психологии и методике и отсутствием системы заданий, которая способствовала бы формированию пространственного мышления у учащихся начальной школы. Отсутствие такой системы является причиной низкого уровня сформированности у учащихся основной школы, а также у выпускников среднего звена, пространственного мышления, без которого нельзя говорить о полном развитии мышления учащихся.
Отмеченное противоречие обуславливает актуальность выбранной темы исследования.
Цель настоящего исследования - разработать систему заданий, способствующих развитию пространственного мышления учащихся основной школы при изучении векторного пространства.
Задачи курсовой работы:
-изучить и проанализировать психолого-педагогическую, методическую литературу по данной проблеме;
-провести анализ состояния проблемы в практике;
-разработать и экспериментально проверить методику формирования пространственного мышления учащихся основной школы при изучении векторного пространства.
Для решения поставленных задач были использованы следующие методы: изучение работ психологов, педагогов, специалистов по методике преподавания математики; наблюдение за деятельностью учителей и учащихся при обучении математике; беседы с учителем и учащимся начальной школы; протоколирование уроков и их анализ; изучение письменных работ учащихся; тестирование.
Глава I Теоретические основы формирования пространственного мышления у учащихся основной школы при изучении векторного пространства
1.1 Понятие пространственного мышления
Прежде, чем говорить о пространственном мышлении и его сущности, необходимо понять что же такое мышление, какие его виды бывают каковы их особенности.
Известный советский психолог А. Н. Леонтьев обоснованно считал, что "жизненный, правдивый подход к воспитанию - это такой подход к отдельным воспитательным и даже образовательным задачам, который исходит из требований к человеку: каким человек должен быть в жизни и чем он должен быть для этого вооружён, какими должны быть его знания, его мышления, чувство и т. д. " Леонтьев А. Н. Деятельность. Сознание. Личность. М. , 2001. - С. 23. Следовательно, организуя и проводя обучение математике, необходимо всё время иметь в виду тот идеал человека, который создан обществом. Если мы с этой точки зрения посмотрим на задачи общего образования, и в частности на задачи школьного курса математики, то придём к выводу, что одной из первоочередных и важнейших задач является задача развития мышления учащегося.
Качества человека, формируемые в учебно-воспитательном процессе, делятся на общие и специальные. Мышление, конечно, относится к общим качествам, и его формирование происходит в процессе обучения всем учебным предметом, в процессе всей жизни учащихся.
Однако, общепризнанно и исторический опыт это подтверждает, что обучение математике в формировании мышления играет первостепенную и исключительно большую роль, в которой роль математики ещё более значительна. Вот что по этому поводу пишет академик В. В. Давыдов: "Решение конкретных задач современного школьного образования в конечном счёте связано с изменением типа мышления, проектируемого целями, содержанием и методами обучения. Всю систему обучения, необходимо переориентировать с формирования у детей рассудочно-эмпирического мышления на развитие у них современного научно-технического мышления" Давыдов В. В. Виды обучения в обучении. М. , 2001. - С. 423. Поэтому нужно установить, какой вклад в решение задачи формирования научно-технического мышления может внести обучение математике, как оно должно быть для этого организованно, каково должно быть его содержание и методы обучения.
Чтобы разобраться во всём этом, необходимо предварительно выяснить, в чём сущность мышления, каковы его особенности и виды, каким образом происходит процесс формирования мышления у детей.
С помощью мышления человек познаёт окружающий мир. Однако познание может осуществляться и без мышления, с помощью одних лишь органов чувств (чувственное познание), дающее человеку разного рода ощущения, восприятия и представления о внешнем мире. Чувственное познание является непосредственным, ибо оно осуществляется в результате прямого контакта человека, его органов чувств, с познаваемым объектом. Между тем мышление является опосредованным познанием объекта, ибо оно осуществляется путём чувственного восприятия совсем другого объекта, закономерно связанного с познавательным объектом, или же путем мысленной переработки чувственных представлений.
Таким образом, мышление, конечно, опирается на чувственное познанием без него невозможно, однако оно далеко выходит за его пределы и поэтому позволяет познать также объекты, такие стороны явлений, которые недоступны органам чувств. Мышление позволяет человеку выявить в познаваемых объектах не только отдельные их свойства и стороны, что возможно установить с помощью чувств, но и отношения и закономерности связей и отношений между этими свойствами и сторонами. Тем самым с помощью мышления человек познаёт общие свойства и отношения, выделяет среди этих свойств существенные, определяющие характер объектов. Это позволяет человеку предвидеть результаты наблюдаемых событий, явлений и своих собственных действий.
И так, если чувственное познание даёт человеку первичную информацию об объектах окружающего мира в виде отдельных свойств и наглядных представлений (образов) о них, то мышление перерабатывает эту информацию, выделят в выявленных свойствах существенные, сопоставляет одни объекты с другими, что даёт возможность обобщения свойств и сознания общих понятий, а на основе представлений образов - строить идеальные действия с этими объектами и тем самым предсказывать возможные результаты действий и преобразований объектов, позволяет планировать свои действия с этими объектами.
Вся эта огромная работа выполняется с помощью мыслительных операций: сравнения, анализа и синтеза, обобщения и иониретизации
Сравнение - это сопоставление объектов познания с целью нахождения сходства (выделения общих свойств) и различия (выявления особенных свойств) каждого из сравниваемых объектов между ними. Эта операция лежит в основе всех других мыслительных операций.
Анализ - это мысленное расчленение предмета на части.
Синтез - это мысленное соединение отдельных элементов или частей в единое целое. В реальном мыслительном процессе анализ и синтез всегда выполняются совместно.
Абстракция - это мысленное выделение каких-либо существенных свойств и признаков объектов при одновременном отвлечении от всех других их свойств и признаков. В результате абстракции выделенное слово или признак сам становится предметом мышления. Все математические понятия как раз и представляют собой абстрактные объекты. Так, например, понятие геометрической фигуры образуется путём выделения в наблюдаемых предметах их формы, протяжённости и взаимного положения в пространстве и отвлечения от всех других свойств (материала, цвета, массы и т. д.) Но при этом производится не только абстрагирование выделение указанных свойств и отбрасывание всех остальных, но и идеализация этих свойств путём мысленного перехода к предельным формам, которые реально, конечно, не существуют (идеальная прямая, точка, плоскость и т. д.).
Обобщение используется в двух различных формах: 1). как мысленное выделение общих свойств (инвариантов) в двух или нескольких объектах и объединение этих объектов в группы на основе выделенных инвариантов (эмпирическое обобщение); 2). как мысленное выделение в рассматриваемом объёме или нескольких объектах, в результате анализа их существенных свойств в виде общего понятия, для целого класса объектов (научно-теоретическое обобщение)
Конкретизация также может выступать в двух формах: 1. как мысленный переход от общего к частному 2. как восхождение об абстрактно-общего и конкретно- частному путём выявления различных свойств и признаков этого абстрактно-общего, как наполнение, обогащения абстрактно-общего конкретным содержанием.
В зависимости от связи между чувственными и отвлечёнными элементами различают три вида мышления: 1. наглядно-действенное; 2. наглядно-образное; 3. теоретическое (отвлеченное, понятийное).
Наглядно-действенное мышление характерно для ребёнка младенческого возраста (до 3-х лет включительно), когда мысленное познание объектов совершается в процессе практических действий с этими объектами.
Наглядно-образное мышление представляет собой мышление с помощью наглядных образов, поэтому такое мышление подчинено восприятию, в нём отсутствует в развёрнутом виде абстрагирование.
1.2 Векторное пространство
Вектором называется семейство всех параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков (рис.1). Вектор изображают на чертежах отрезком со стрелкой (т.е. изображают не все семейство отрезков, представляющее собой вектор, а лишь один из этих отрезков). Для обозначения векторов в книгах и статьях применяют жирные латинские буквы а, в, с и так далее, а в тетрадях и на доске - латинские буквы с черточкой сверху,
Той же буквой, но не жирной , а светлой (а в тетради и на доске- той же буквой без черточки) обозначают длину вектора. Длину иногда обозначают также вертикальными черточками - как модуль (абсолютную величину) числа. Таким образом, длина вектора а обозначается через а или IаI, а в рукописном тексте длина вектора а обозначается через а или IаI. В связи с изображением векторов в виде отрезков (рис.2) следует помнить , что концы отрезка, изображающего вектор, неравноправны: одного конца отрезка к другому. Различают начало и конец вектора (точнее, отрезка, изображающего вектор).
Весьма часто понятию вектора дается другое определение: вектором называется направленный отрезок. При этом векторы (т.е. направленные отрезки), имеющие одинаковую длину и одно и то же направление (рис.3), уславливаются считать равными.
Векторы называются одинаково направленными, если их полупрямые одинаково направлены.
Сложение векторов.
Все сказанное пока еще не дает понятие вектора достаточно содержательным и полезным. Большую содержательность и богатую возможность приложений понятие вектора получает тогда, когда мы вводим своеобразную «геометрическую арифметику» - арифметику векторов, позволяющую складывать векторы, вычитать их и производить над ними целый ряд других операций. Отметим в связи с этим, что ведь и понятие числа становится интересным лишь при введении арифметических действий, а не само по себе.
Суммой векторов а и в с координатами а1, а2 и в1, в2 называется вектор с с координатами а1 + в1, а2 + в2, т.е.
а (а1; а2) + в (в1;в2) = с (а1 + в1; а2 + в2).
Следствие:
а + в = в + а , (коммутативность)
а + ( в + с ) = (а + в) + с. (ассоциативность)
Для доказательства коммутативности сложения векторов на плоскости необходимо рассмотреть пример.
а и в - векторы (рис.5).
Пусть ОА =а, ОВ = в.
1. Строим параллелограмм ОАСВ: АМ II ОВ, ВН II ОА.
2. а = ОА = ВС,
в = ОВ = АС, т.к. параллелограмм.
3. ОА + АС = ОВ + ВС = ОС, значит а + в = в + а. ч.т.д.
Для доказательства ассоциативности мы отложим от произвольной точки О вектор ОА = а, от точки А вектор АВ = в и от точки в - вектор ВС = с. Тогда мы имеем: АВ + ВС =АС.
(а + в ) + с = (ОА + АВ) + ВС = ОВ + ВС = ОС,
а + (в + с ) = ОА + (АВ + ВС) = ОА + АС = ОС,
откуда и следует равенство
а + ( в + с ) = (а + в) + с.
Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно (при некотором навыке) для решения задач при помощи векторов.
Остановимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор», имеющий нулевую длину и не имеющий никакого направления; этот «вектор» изображается «отрезком нулевой длины», т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.
Равенство векторов.
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.
Из данного определения равенства векторов следует, что разные векторы одинаково направлены и равны по абсолютной величине.
И обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.
Действительно, пусть векторы АВ и СD - одинаково направленные векторы, равные по абсолютной величине (рис.6). Параллельный перенос, переводящий точку С в точку А, совмещает полупрямую СD с полупрямой АВ, так как они одинаково направлены. А так как отрезки АВ и CD равны, то при этом точка D совмещается с точкой В, то есть параллельный перенос переводит вектор CD в вектор АВ. Значит, векторы АВ и СD равны, что и требовалось доказать.
Скалярное произведение двух векторов и его свойства.
Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.
Обозначение:
а х в = IaI * IbI * cos ( а, в).
Свойства скалярного произведения:
1. а х в = в х а.
Для того, чтобы два нулевых вектора а и в были перпендикулярны, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. а х в = 0.
Выражение а х а будем обозначать а2 и называть скалярным квадратом вектора а.
Свойства операций над векторами.
Имеют место следующие теоремы об операциях над векторами, заданными в координатной форме.
1. Пусть даны а = (ах, аy, аz) и в = ( вx, ву, вz), тогда сумма этих векторов есть вектор с, координаты которого равны сумме одноименных координат слагаемых векторов, т.е. с = а + в = (ах + вx; аy + ву; аz + вz).
Пример 1.
а = ( 3; 4; 6) и в = ( -1; 4; -3), тогда с = ( 3 + ( -1); 4 + 4; 6 + (-3)) = ( 2; 8; 3).
2. а = (ах, аy, аz) и в = ( вx, ву, вz), тогда разность этих векторов есть вектор с , координаты которого равны разности одноименных координат данных векторов, т.е. с = а - в = (ах - вx; аy - ву; аz - вz).
Пример 2.
а = ( -2; 8; -3) и в = ( -4; -5; 0), тогда с = а - в = ( -2 - ( -4 ); 8 - ( -5 ); -3 -0 ) = = ( 2; -13; -3).
3. При умножении вектора а = (ах, аy, аz) на число м все его координаты умножаются на это число, т.е. ма = ( мах, маy, маz).
Пример 3.
а = ( -8; 4; 0) и м = 3, тогда 3а = ( -8 х 3; 4 х 3; 0 х 3) = ( -24; 12; 0).
Понятие вектора, которое нашло широкое распространение в прикладных науках, явилось плодотворным и в геометрии. Аппарат векторной алгебры позволил упростить изложение некоторых сложных геометрических понятий, доказательства некоторых теорем школьного курса геометрии, позволил создать особый метод решения различных геометрических задач.
Рассмотрим доказательство некоторых теорем с помощью векторов.
Теорема 1.
Диагонали ромба взаимно перпендикулярны.
Доказательство.
Пусть АВСD - данный ромб (рис.7). Введем обозначения: АВ = а, ВС = в. Из определения ромба: АВ = DC = а, AD = ВС = в.
По определению суммы и разности векторов АС = а + в; DВ = а - в.
Рассмотрим АС * DВ = (а + в )( а - в) = а2 - в2 .
Так как стороны ромба равны, то а = в. Следовательно, AC * DB =0. Из последнего получаем АС DВ, т.е. DB АС. Ч.т.д.
Выясним, что можно сказать о тех множествах, между элементами которых отображение устанавливает соответствие. Рассмотрим плоскость. Выберем на ней некоторую точку, назовем ее нулем и обозначим знаком . После этого с любой точкой плоскости мы можем связать вектор (такой, каким его представляют в школе: направленным отрезком, стрелочкой, идущей из точки в любую точку плоскости). Теперь множество точек плоскости можно трактовать как множество векторов, имеющих общее начало в точке . Эта трактовка есть, разумеется, не что иное, как взаимно однозначное отображение множества точек плоскости на множество компланарных вектоpов, выходящих из точки . Пусть две точки и лежат на одной пpямой с точкой (или, что то же, два вектоpа и лежат на одной пpямой). Допустим, каким-то обpазом мы умеем измеpять длину. Обозначим длину вектоpа чеpез . Если
,
то будем говоpить, что
,
когда и лежат по одну стоpону от точки , и
,
когда они лежат по pазные стоpоны (pис.1 а).
Таким обpазом, мы опpеделили умножение вектоpа на число. Далее, пусть и -- два пpоизвольных вектоpа. Опpеделим их сумму как вектоp, напpавленный по диагонали паpаллелогpамма, постpоенного на этих вектоpах, длина которого pавна длине диагонали, т.е.
(pис.1 б).
Рисунок 1. Действия над векторами.
Необходимо понимать, что способы нахождения и мы именно опpеделили, pуководствуясь либо личными вкусами, либо дpугими внешними пpичинами. Само по себе множество точек не пpедполагает какого-либо способа опpеделения и . Мы можем (если в том возникнет потpебность) опpеделить эти опеpации иным способом и даже назвать по-дpугому (нет, опять же, никаких внутpенних пpичин называть вектоp суммой, а не, скажем, пpоизведением). То, как мы опpеделили умножение на число и сумму, есть дань тpадиции и тем физическим сообpажениям, котоpые легли в основу этой тpадиции. Умножение на число и сумма вектоpов -- пpимеpы отобpажений, о котоpых говоpилось выше. Пеpвое отобpажает плоскость в себя: некоторая точка плоскости отображается в точку той же самой плоскости. Втоpое отобpажает любую паpу вектоpов (элемент области опpеделения есть любая паpа вектоpов) в вектоp: любой паре точек плоскости ставится в соответствие третья точка этой плоскости. Опpеделенные нами отобpажения обладают pядом свойств. Во-первых, имеет место коммутативность и ассоциативность сложения и умножения на число:
где -- числа, а и -- векторы. Далее, точке , очевидно, соответствует нулевой вектор, для которого справедливо
Кроме того, для любого вектоpа существует вектоp , такой, что
и он, естественно, обозначается чеpез . И, наконец, если вектоp умножить на 1, то он отобpазится в себя (и длина, и напpавление останутся пpежними). Множество, для элементов котоpого опpеделено сложение и умножение на число, обладающее указанными свойствами, мы будем называть вектоpным пpостpанством. Замечательным оказывается то, что вектоpом, т.е. элементом вектоpного пpостpанства, может быть не только точка плоскости (или стpелочка), а объект любой пpиpоды (как мы увидим далее -- число, функция, опеpатоp и пpочее). Необходимо лишь опpеделить сложение и умножение на число, обладающие указанными выше свойствами. Фоpмализуем все вышесказанное следующим обpазом. Пусть -- некотоpое непустое множество и -- некоторые его элементы. Это множество называется вектоpным (или линейным) пpостpанством, если указано пpавило, по котоpому любым двум элементам из ставится в соответствие тpетий элемент из , называемый суммой элементов, и пpавило, по котоpому любому элементу из и любому числу (вообще говоpя, комплексному) ставится в соответствие элемент из , называемый пpоизведением элемента на число, и эти пpавила подчиняются следующим аксиомам:
-- коммутативный закон;
-- ассоциативный закон;
существует элемент , называемый нулем, такой, что ;
для любого существует пpотивоположный элемент такой, что ;
;
;
;
.
В аксиомах (5)-(8) -- числа. Элементы называются точками (или вектоpами).
-- множество вещественных чисел. Выполнение аксиом (1)-(8), для стандаpтным обpазом опpеделенных сложения и умножения, нетpудно пpовеpить. Таким обpазом, -- это вектоpное пpостpанство, точками или вектоpами котоpого служат вещественные числа. Кстати, если "pазместить" все вещественные числа на пpямой (т.е. выбpать нулевую точку, а точку связать с числом , если pасстояние от до pавно ), то и здесь вектоpы можно пpедставить в виде стpелочек, направленных из точки в точку .
-- множество, элементом котоpого является любая упорядоченная1.1 совокупность из чисел (значок над -- не степень, а индекс). Число будем называть -й компонентой элемента. Опpеделим сложение элементов и умножение их на число покомпонентно, т.е. если и -- элементы и -- число, то
и
Нулевым элементом назовем элемент . Легко пpовеpяются аксиомы (1)-(8), так что и множество является вектоpным пpостpанством.
Сделаем попутно небольшое добавление к пpимеpу 2. Пусть и -- два пpоизвольных множества, состоящих из элементов и соответственно. Можно обpазовать новое множество, элементами котоpого будут всевозможные упоpядоченные паpы . Это новое множество называется пpямым пpоизведением множеств и и обозначается чеpез . Пусть тепеpь и -- вектоpные пpостpанства. Пpямое пpоизведение можно также пpевpатить в вектоpное пpостpанство, если сложение и умножение на число опpеделить следующим обpазом:
для и -- вещественное или комплексное число. Очевидно, пpостpанство можно тpактовать как пpямое пpоизведение вектоpных пpостpанств
-- множество комплексных чисел , где , а . Сложение и умножение на число опpеделим следующим обpазом:
Нулевым назовем элемент . Аксиомы (1)-(8) выполняются и здесь, откуда следует, что и также является вектоpным пpостpанством.
Множество матpиц также будет вектоpным пpостpанством, если сумму матpиц и умножение матpицы на число опpеделить так, как это делается в линейной алгебpе, т.е. покомпонентно. Нулевым элементом этого пpостpанства будет нулевая матpица, все элементы котоpой pавны нулю.
И так далее, и так далее. Надо подчеpкнуть, что множество имеет шанс называться вектоpным пpостpанством, если: 1) оно обладает достаточным числом элементов и 2) надлежащим обpазом опpеделены опеpации сложения и умножения на число. Обpатите также внимание на то, что наши пpовеpки спpаведливости аксиом (1)-(8) опиpались на пpавила сложения и умножения действительных чисел. Если некотоpое подмножество вектоpного пpостpанства само обpазует вектоpное пpостpанство, то оно называется подпpостpанством вектоpного пpостpанства . Напpимеp, любая плоскость, пpоходящая чеpез точку 0 (почему именно такая?) в является подпpостpанством , так как сама является вектоpным пpостpанством . Аналогично любая пpямая, пpоходящая чеpез точку 0, является подпpостpанством . Кpоме того, данная пpямая является подпpостpанством тех плоскостей , в котоpых она лежит. Упражнение.Из каких элементов состоит множество, являющееся подпpостpанством и не совпадающее ни с одним из них? Сумма пpоизведений ненулевых вектоpов на числа
называется линейной комбинацией векторов . Очевидно, если -- вектоpное пpостpанство, то оно содеpжит и любую линейную комбинацию своих элементов, т.е. линейная комбинация есть вектоp. Вектоp, котоpый является линейной комбинацией каких-либо дpугих вектоpов, называется линейно зависимым от этих вектоpов. Если же он не может быть пpедставлен в виде линейной комбинации указанного набоpа вектоpов, то он от них линейно независим. Если мы в выбеpем какой-нибудь вектоp , не равный нулю, то все остальные векторы оказываются линейно от него зависимыми, так как могут быть записаны в виде , где -- число. В вектоpном пpостpанстве каpтина дpугая. Выбpав ненулевой вектоp , мы не можем утвеpждать, что все остальные вектоpы будут линейно зависеть от него, поскольку вектоpы, линейно зависимые от , будут лежать на пpямой, пpоходящей чеpез точки и . Но уже двух вектоpов, не лежащих на одной пpямой, достаточно для того, чтобы все остальные вектоpы линейно от них зависели. Совокупность ненулевых вектоpов из некотоpого линейного (или вектоpного, что то же) пpостpанства называется линейно независимой, если не существует такого ненулевого набоpа чисел , что
Для пpоизвольного множества вектоpов максимальное число линейно независимых вектоpов называется его pазмеpностью. Так, множество точек на пpямой имеет pазмеpность один, т.е. одномеpно, а множество точек на плоскости -- двумеpно. Если такого максимального числа не существует (число линейно независимых вектоpов больше любого напеpед заданного числа ), то множество называется бесконечномеpным, в пpотивном случае -- конечномеpным.
1.2 Роль векторного пространства в формировании пространственного мышления учащихся основной школы
Ряд зарубежных психологов во главе с известным психологом Ж. Пиаже считают, что процесс умственного развития является самостоятельным и независимым от обучения, он имеет свои собственные внутренние закономерности. Обучение может лишь задерживать или ускорять сроки появления у ребёнка соответствующих видов мышления, не изменяя их последовательности и особенностей. Жан Пиаже писал: "это большая ошибка думать, что ребёнок приобретает понятие числа и другие математические понятия непосредственно в обучении. Наоборот, в значительной степени он развивает их самостоятельно и спонтанно" Пиаже Ж. Как дети образуют математические понятия. Вопросы психологии, М., 2001. -С. 133.
У Б. Рассела была совершено другая точка зрения. Он считал, что психология максимально подчинена логистике. "Когда мы воспринимаем белую розу, говорит Рассел, мы постигаем одновременно два понятия - понятия розы и белизны. Это происходит в результате процесса, аналогичного процессу восприятия: мы схватываем непосредственно и как бы извне "универсалии", соответствующие ощущаемым объектам, которые "существуют" и ощущаются независимо от мышления субъекта. Он считал, что свойства истинности и ложности прилагаются к понятиям независимо не от чего. Что касается законов, управляющих универсалиями и регулирующих их отношения, то они вытекают только из логики, и психология может лишь склониться перед этим предварительным знанием, которое дано ей в совершенно готовом виде. Такова гипотеза Б. Рассела. Бессмысленно было бы относить её к метафизике или метопсихологии на том основании, что она противоречит здравому смыслу экспериментаторов; ведь здравый смысл математиков приспосабливается к ней вполне успешно, а психология должна считаться с математиками. Однако столь радикальный тезис заставляет задуматься. Прежде всего он устраняет понятие операции, потому, что если универсалии берутся извне, то их не надо конструировать. В выражении "1+1=2" знак "+" не означает тогда ничего иного, кроме отношения между двумя единицами, и не включает никакой деятельности, порождающей число "2"; как предельно чётко говорит Кутюра, понятие операции по существу "антропоморфно". Следовательно, теория Рассела а fortiori резко отделяет субъективные факторы мышления (убеждённость и т. д.) от факторов объективных (необходимость, вероятность и т. п.). Наконец, этот тезис устраняет генетическую точку зрения: стремясь подчеркнуть бесполезность последований мышления ребёнка, один английский сторонник Рассела сказал как-то, что "логик интересуется истинными мыслями, тогда как психолог находит удовольствие в том, чтобы описывать мысли ложные. " В немецкой "психологии мышления" возникают такие же проблемы, что и в концепции Б. Рассела, хотя здесь речь идёт уже о работах психологов. Правда с точки зрения сторонников этой школы, логика вносится в сознание не извне, а из внутри.
Как метод "психология мышления" зародилась одновременно во Франции и Германии. Бике полностью отказавшись от ассоциационизма, который он отстаивал в своей небольшой книге "психология умозаключения" вновь вернулся к вопросу о взаимоотношении мышления и образов и, опираясь на весьма интересное использование процесса провоцируемой интроспекции, открыл наличие безобразного мышления: оказалось, что отношения, суждения, занимаемые позиции и т. п. выходят за пределы системы образов, и тогда процесс мышления уже не может быть сведён к "созерцанию галереи образов. " Что же касается определения этих актов мышления, не укладывающихся в рамки ассоцианисткой интерпретации, то здесь Бике весьма осторожен. Он ограничивается констатацией наличия близости между интеллектуальными и моторными "позициями" и приходит к выводу, что рассмотренное с точки зрения одной лишь интроспекции, "мышление представляет собой неосознанную деятельность сознания". Урок бесконечно поучительный, но вводящий в заблуждение относительно возможности метода, который плодотворнее скорее для постановки проблем, чем для их решения.
Из всего этого можно сделать вывод, что вначале над нами долгое время довлел постулат не сводимости логических принципов, которыми вдохновлялись сторонники "психологии мышления". Изучение формирования операций у ребёнка ввело нас, напротив, к убеждению, что логика является зеркалом мышления, а не наоборот. После многовековых споров проблема отношений между формальной логикой и психологией интеллекта получает решение, аналогичное тому, которое в своё время положило конец конфликту между дедуктивной геометрией и геометрией реальной, или физической. Как и в случаи этих двух дисциплин, логика и психология мышления вначале совпадали, не будучи дифференцированы. Аристотель, формулируя законы силлогизмов, считал, что он создал естественную историю разума. Когда же психология стала независимой наукой, психологи хорошо поняли, что рассуждения о понятии, суждении и умозаключении, содержащиеся в учебниках логики, не освобождают их от необходимости искать разгадку каузального механизма интеллекта. Однако в силу сохранившегося воздействия первоначальной нерасчлененности они ещё продолжали рассматривать логику как науку о реальности, лежащую в той же плоскости, что и психология, но занимающегося исключительно "истинным мышлением", в противоположность мышлению вообще, взятому в абстракции от каких бы то ни было норм. Отсюда та иллюзорная перспектива "психологии мышления", согласно которой мышление в качестве психологического явления представляет собой отражение законов логики. Напротив, как только мы поняли, что логика представляет собой математику, сразу же - в результате простого переворачивания исходной позиции - исчезает ложное решение проблемы отношений между логикой и мышлением Пиаже Ж. Как дети образуют математические понятия. Вопросы психологии, М., 2001. -С. 72-83.
Большинство же советских психологов (Л. С. Выготский, А. Н. Леонтьев и другие) придерживались диаметрально противоположной точки зрения. Они, не отождествляя процессы обучения и умственного развития, считают, что обучение должно идти впереди развития.
Само умственное развитие рассматривается как процесс присвоения ребёнком общественно-исторического опыта, и поэтому он имеет конкретно-историческую, социальную природу: его этапы и психологические особенности определяются системой организации и способом передачи ребёнку общественного опыта. Все виды и особенности мыслительной деятельности имеют объективные, общественно - задаваемые образцы и усваиваются ребёнком как в стихийном, так и в целенаправленном обучении. При этом роль обучения в умственном развитии исторически всё время возрастает и в настоящее время является решающей.
Л. С. Выготский указывал, что обучение должно ориентироваться главным образом на ещё не сложившиеся, но возникающие психические виды деятельности ребёнка. Он ввёл понятие зоны ближайшего развития, ребёнок ещё не может самостоятельно выполнять данную деятельность, но уже может её выполнить при помощи взрослого. Выполняя эту деятельность при постоянно уменьшающейся помощи взрослого, ребёнок переходит из зоны ближайшего развития в зону актуального развития, в которой он уже эту деятельность может выполнять вполне самостоятельно. Следовательно, процессы умственного развития и обучения являются тесно связанными и взаимно обусловленными: обучение опирается на доступный уровень развития. Но развитие не следует за обучением как тень, автоматически: оно зависит от содержания и характера обучения и многих других факторов, социальных и воспитательных (семьи, среды, природных задатков и т. д. ). Я не разделяю такое категорическое мнение об одностороннем влиянии обучения на умственное развитие или наоборот. Я рассматриваю оба эти процесса во взаимном влиянии: обучение зависит от развития и развитие обусловлено обучением. Обучение, стимулируя умственное развитие, само на него опирается. Умственным может быть только такое обучение, которое, опираясь на уже достигнутое развитие школьника, продвигает его вперёд, развивая его познавательные возможности. В психологии долго считалось, что наглядно-образное мышление является низшим по сравнению со словесно-логическим (понятийным).
В заслугу математике ставилось развитие абстрактного мышления. Долгий путь развития математики, всё большая её формализация, зачастую отрыв от содержательной стороны постепенно влияли и на содержание школьного курса. Он становится всё более формализованным. В учебниках и на уроках математики осуществлялся быстрый переход от определений понятий к оперированию знаками, замещающими эти понятия, без должного уяснения содержания, без сознания полноценного мысленного образа. Школьники (большая часть) вынуждены формально запоминать определения понятий, их свойства, оперирование ими. Изучение математики для некоторых стало невыносимым трудом, не приносящим радости. Вследствие этого на современном этапе развития психолого-педагогической науки на одном из первых по значимости мест выдвигается проблема формирования и развития образного мышления учащихся, особенно при обучении математики, самой абстрактной из наук. Значимость наглядно-образного представления учебной информации, становится ещё более понятной на фоне данных нейрофизиологии последних двух десятилетий, которая убедительно доказала функциональную асимметрию полушарий головного мозга человека. Кроме того, у значительной части школьников (около 20%) наблюдается латерализация правого полушария. Поэтому для успешного усвоения ими математических знаний необходимо усиление наглядно-образной составляющей предъявляемого материала, как противовеса (в некоторых случаях) или необходимой, преобладающей в математике абстрактно-логической компоненты.
Математика берёт своё начало в практической деятельности людей, в описании пространственных форм и количественных отношений видимого окружающего мира. Вводя математические понятия учёные математики пользовались соответствующими образами. Многие из этих образов, как вспомогательные элементы, использовались в обучении. В силу ряд причин с течением времени некоторые образы неразумно вытеснялись из процесса обучения. В большей степени это связано с возрастающей формализацией математики.
Многочисленными исследованиями, выполненными в рамках общей, возрастной и педагогической психологии показано, что интеллектуальное развитие личности в онтогенезе неразрывно связано с овладением пространством сначала практически, а затем и теоретически. Само развитие овладения пространством понимается при этом, как усложнение и качественное изменение видов и способов ориентации. Важной стороной интеллектуального развития является пространственное мышление, обеспечивающее в ходе познания выделение в объектах и явлениях действительности пространственных свойств и отношений (формы, величины, направления, протяжённости и т. п.), создание на этой основе пространственных образов и оперирование ими в процессе решения задач. Трудно назвать хотя бы одну область человеческой деятельности, где создание пространственных образов и оперирование ими не играло существенной роли.
Особое значение пространственное мышление имеет в различных видах конструктивно-технической, изобразительной, графической деятельности (исследования Б. Афанасьева, А. Д. Ботвинникова, Л. Л. Гуровой, Е. И. Игнатьева, С. Н. Кабановой - Миллер, В. И. Киреенко, Т. В. Кудрявявцева, Н. П. Линьковлой, Б. Ф. Ломова, В. А. Моляко, В. С. Мухиной, Н. П. Сакулиной и другие).
Роль пространственного мышления в овладении различными видами деятельности особенно возросла в настоящее время в связи с широким использованием в науке и технике графического моделирования, позволяющего более наглядно и вместе с тем достаточно формализовано выявлять и описывать исследуемые теоретические зависимости, прогнозировать их проявление в различных областях действительности. Отличительной особенностью труда в условиях современного производства является опосредованный характер управления автоматически действующими техническими объектами и процессами, на основе сигнализирующих устройств, различных не только по своему производственному содержанию, но и тем требованиям, которые они предъявляют к пространственному мышлению.
С этой точки зрения все применяемые в настоящее время в технике сигнализирующие устройства различают на воспроизводящие реальные свойства объектов и обозначающие их с помощью специальной системы символов и знаков. Технологические исследования (М. В. Гамезо, В. П. Зинченко, Б. Ф. Ломов, В. Н. Пушкин, В. Ф. Рубахин и другие) показывают, что в этих условиях скорость, надёжность приёма и переработки зрительной информации об управляемых объектах зависит главным образом от умения создавать адекватные зрительные образы, свободно переходить от одной знаковой системы к другой, "перекодировать" поступающую информацию с учётом динамики сигналов-кодов, не допуская рассогласования между восприятием непосредственно поступающей на пульт управления звуковой информации и образами конкретных производственных объектов. Вся эта деятельность протекает в уме, без зрительной опоры на реально действующие механизмы и процессы, что требует хорошо развитого пространств и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.