На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


автореферат Сучасна тенденця розвитку госптальних нформацйних систем. Концептуальна модель класифкацї клнчних дагнозв. Комплекс програмних компонентв для ефективного використання. Формальна модель клнчного дагнозу як основа для електронної класифкацї.

Информация:

Тип работы: автореферат. Предмет: Медицина. Добавлен: 21.03.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Національна академія наук України
Міністерство науки і освіти України
Міжнародний науково-навчальний центр інформаційних технологій та систем
Литвинов Олександр Анатолійович
УДК 574/578+004.38
ІНФОРМАЦІЙНА ТЕХНОЛОГІЯ класифікації клінічнИХ діагнозів НА ОСНОВІ СЕМАНТИКО-СИНТАКСИЧНОЇ МОДЕЛІ

Спеціальність 05.13.09 - Медична та біологічна інформатика і кібернетика
Автореферат
дисертації на здобуття наукового ступеня
кандидата технічних наук
КИЇВ - 2008
Дисертацією є рукопис.
Робота виконана в Міжнародному науково-навчальному центрі інформаційних технологій та систем (Національна академія наук України і Міністерство науки і освіти України), Дніпропетровській державній медичній академії (Міністерство науки і освіти України).
Науковий керівник:
доктор медичних наук, с.н.с., Коваленко Олександр Сергійович, Міжнародний науково-навчальний центр інформаційних технологій та систем НАНУ і МОНУ, м. Київ, зав. відділом медичних інформаційних систем.
Офіційні опоненти:
доктор технічних наук, с.н.с., Файнзільберг Леонід Соломонович, Міжнародний науково-навчальний центр інформаційних технологій та систем НАНУ і МОНУ, м. Київ, провідний науковий співробітник;
кандидат фізико-математичних наук, Івлічев Володимир Петрович, Інститут кібернетики ім. В.М.Глушкова НАН України, м. Київ, провідний науковий співробітник.
Захист відбудеться “12” березня 2008 р. о 15 годині на засіданні
спеціалізованої вченої ради Д26.171.03 в Міжнародному науково-навчальному центрі інформаційних технологій та систем НАНУ і МОНУ за адресою 03680, Київ-680, МСП, просп. Акад. Глушкова, 40.
З дисертацією можна ознайомитись у бібліотеці інституту кібернетики ім. В.М. Глушкова НАН України за адресою: 03680, МПС, Київ, просп. Акад. Глушкова, 40.
Автореферат розісланий “9” лютого 2008 р.
Вчений секретар
спеціалізованої вченої ради Д26.171.03
_________________ Т.М.Гонтар
ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Сучасна тенденція розвитку госпітальних інформаційних систем (ГІС) полягає в переході від вузько-функціональних систем до багатофункціональних, комплексних і відкритих інформаційних систем; при цьому актуальним стає питання інтеграції різноманітних систем у єдиному інформаційному просторі. Ключовим моментом у цьому сенсі стають питання розробки та вдосконалення стандартів щодо надання та обміну інформацією.
Вирішення питань щодо інтеграції різноманітних госпітальних інформаційних систем, централізованої обробки, аналізу та дослідження даних, що поступають з різноманітних джерел, тісно пов'язано з вирішенням проблем стандартизації відносно надання, використання та керування біо-медичною інформацією.
При цьому у якості пріоритетних класифікацій, що використовуються в госпітальних інформаційних системах стають класифікації діагнозів, операцій, процедур, які виконують роль бази для аналітичної та статистичної оцінки лікувально-діагностичного процесу. Найважливішою серед означених слід вважати класифікацію клінічних діагнозів, яка лежить у основі і діагностичних систем, і оцінки результатів діяльності лікувальних закладів, а також є базою створення стандартів лікування.
На даний момент у більшості медичних інформаційних систем, розповсюджених на території України і в світі, як класифікація діагнозів використовується міжнародна класифікація хвороб 10-го перегляду. Однак є труднощі з її використанням в практичних і дослідницьких цілях. Так, при інформаційній обробці діагнозів не враховуються всі ознаки, властиві конкретному захворюванню. Процес адаптації інших термінологічних систем пов'язаний як зі значними витратами, так і з рядом недоліків, які роблять неефективною їх адаптацію до систем державних лікувальних закладів України.
Таким чином, дослідження всесвітнього досвіду, обґрунтування і побудова концептуальної моделі оптимальної класифікації діагнозів для лікувальних закладів України, розробка і побудова інструментарію керування цією класифікацією, враховуючи можливу інтеграцію з однією із сучасних термінологічних систем, а також її впровадження в госпітальну систему, що враховує специфіку державних лікувальних установ, є важливим завданням, пов'язаним з інформатизацією державних медичних закладів України.
Зв'язок роботи з науковими програмами, планами, темами. Напрямок досліджень співпадає з напрямком досліджень за держбюджетними науково-дослідницькими роботами на тему:
1. „Розробка на засадах інформаційних технологій термінів та обсягів стаціонарного лікування з невідкладної абдомінальної хірургії, інтенсивної терапії та знеболювання” (№ державної реєстрації 0199V002123, шифр роботи ІН.05.99., терміни виконання 01.1999 - 11.2003) і „Розробка термінів та обсягів стаціонарного лікування з невідкладної колоректальної хірургії, інтенсивної терапії та знеболювання” (№ державної реєстрації 0104V010390, шифр роботи ІН.07.05, терміни виконання 01.2005 - 11.2007), які здійснювались за тематичним планом проведення НДДКР у Дніпропетровській державній медичній академії.
2. „Розробка комплексу заходів інформаційних технологій телемедицини” (№ державної реєстрації 0107V000568, шифр роботи ВФ.135.10., терміни виконання 01.2007 - 12.2010), яка здійснюється за тематичним планом проведення НДДКР у Міжнародному науково-навчальний центрі інформаційних технологій та систем.
Мета і задачі дослідження. Метою дослідження є обґрунтування, розробка та реалізація інформаційної технології класифікації клінічних діагнозів.
Задачі дослідження. Для досягнення поставленої мети треба вирішити наступні завдання:
1. Провести аналіз існуючих класифікацій медичної термінології та виділити форму та вимоги до класифікації клінічних діагнозів для ефективного використання в госпітальних інформаційних системах України.
2. Розробити формальну модель клінічного діагнозу як основу для електронної класифікації клінічних діагнозів.
3. Побудувати концептуальну модель класифікації клінічних діагнозів.
4. Розробити та реалізувати механізми узгодження даної класифікації зі стандартними термінологічними системами.
5. Розробити та реалізувати комплекс програмних компонентів для ефективного використання пропонованої класифікації в інформаційних системах.
6. Здійснити впровадження розробленої класифікації в ГІС.
Об'єкт дослідження. Об'єктом дослідження є розробка автоматизованих термінологічних систем та їх використання у сучасних інформаційних системах.
Предмет дослідження. Предметом дослідження є інформаційна технологія класифікації клінічних діагнозів, семантико-синтаксична модель клінічного діагнозу, модель класифікації клінічних діагнозів, госпітальна інформаційна система.
Методи дослідження: Методи розробки класифікації клінічних діагнозів ґрунтуються на використанні математичних апаратів логіки предикатів, формальних граматик, фреймових систем. Методи розробки програмного забезпечення класифікації та госпітальної системи ґрунтуються на використанні: методології RUP для розробки об'єктно-орієнтованих інформаційних систем; метаінформаційного підходу при побудові підсистем статистики та аналітики госпітальної інформаційної системи; універсальної мови опису моделей (UML) для формалізації структурної та функціональної складової розроблених підсистем.
Наукова новизна отриманих результатів складається у тому, що:
- вперше на основі проведеного дослідження існуючих медичних термінологічних систем визначені основні вимоги щодо їх формування, а також фактори, які впливають на їх впровадження в лікувальні заклади України;
- вперше розроблено формальну модель клінічного діагнозу, яка включає семантичну та синтаксичну складові, описані з використанням формальних граматик та дескрипційної логіки;
- вперше на базі сформованої формальної моделі розроблено концептуальну модель класифікації клінічних діагнозів з використанням фреймового та об'єктно-орієнтованого підходів опису знань, а також її даталогічна модель для зберігання в реляційної базі даних;
- вперше розроблено механізм взаємодії зі стандартними термінологічними системами;
- вперше здійснено реалізацію розробленої технології в госпітальну інформаційну систему.
- удосконалено технологію проектування аналітичної підсистеми та підсистеми статистики госпітальної інформаційної системи з застосуванням метаінформаційного підходу на засадах шаблону захисту від варіацій.

Практичне значення

На засадах розробленої технології класифікації клінічних діагнозів можлива: побудова медичних класифікацій іншого напрямку (процедур, операцій); розробка стандартів медичної допомоги, які можуть використовуватися для страхової медицини.
Методика розробки модулів аналітики та статистики госпітальної інформаційної системи на базі метаінформаційного підходу дозволяє скоротити витрати, пов'язані з введенням нових стандартних та розширених звітних та аналітичних форм, здійснити адаптацію існуючої госпітальної інформаційної системи до іншого лікувального закладу.
Впровадження розроблених підсистем аналітики та статистики госпітальної інформаційної системи дає можливість більш якісного інформаційного дослідження лікувально-діагностичного процесу лікувального закладу.
Впровадження розробленої класифікації та госпітальної інформаційної системи на базі міської лікарні № 6 м. Дніпропетровська збільшило якість та швидкість формування звітності, зменшило часові витрати лікаря на формування стандартної документації.
Використання розробленої класифікації як основи програмного забезпечення для визначення обсягів гарантованої медичної допомоги на базі Дніпропетровського інституту гастроентерології АМН України дозволило комплексно вирішити задачі розрахунку фактичних витрат на лікування по конкретному хворому.
Апробація результатів дисертації. Основні результати роботи доповідалися й обговорювалися на міжнародних конференціях: “Теорія і техніка передачі, прийому і обробки інформації” (Харків 2003 р.) та “Математичне й програмне забезпечення інтелектуальних систем” (Дніпропетровськ 2004, 2005, 2006 р.).
Публікації. За матеріалами дисертації опубліковано 14 робіт, 1 монографія, 6 статей у фахових виданнях, 1 стаття в міжнародному науковому журналі, отримано 2 авторських свідоцтва на твір.
Структура і обсяг роботи. Дисертаційна робота складається з вступу, п'яті розділів, висновків, списку використаних джерел з 224 найменувань вітчизняних та іноземних авторів. Робота викладена на 165 сторінок тексту, містить 80 ілюстрацій, 29 таблиці.
Автор висловлює щиру подяку своєму науковому керівнику, д.мед.н. Коваленко О. С., завідувачу кафедри факультетської хірургії та хірургії інтернів, професору, д.мед.н. Березницькому Я. С., завідувачу кафедри ЕОМ ДНУ, професору, д.т.н. Хандецькому В. С. та безлічі інших людей без чуйної участі яких ця робота ніколи не стала би об'єктивною реальністю.
ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтована актуальність проблеми, сформульовані мета та задачі, об'єкт, предмет та методи дослідження, надані його наукова новизна та практичне значення.
У першому розділі надається аналіз вітчизняної та зарубіжної літератури про сучасний стан в галузі ГІС і стандартів репрезентації, передачі медичних даних. Особлива увага надана аналізу сучасних термінологічних систем і питанням їх впровадження у ГІС. Розглянуті структура та основні вимоги до сучасних термінологічних систем. Показано, що на цей час не існує єдиної термінологічної системи, яка відповідала б всім цим вимогам. На території України та, взагалі, країн СНД основною термінологічною системою для кодування діагнозів є класифікація МКХ-10. З погляду оцінки розвитку та розповсюдження сучасних термінологічних систем (UMLS, GALEN, SNOMED CT), а також розглядаючи загальну тенденцію до їх інтеграції, зроблено висновок, що перехід до однієї з цих систем є неминучим; при цьому основним претендентом слід вважати SNOMED CT. Наведено основні недоліки та проблеми щодо впровадження цих систем в умовах України: великі кошти на переклад та адаптацію, складність використання та обслуговування таких систем.
Розуміючи неможливість швидкого переходу до будь-якої закордонної термінологічної системи, слід розробити модель, структуру термінологічної системи, яка буде враховувати досвід побудови попередників і також лишатися корисною при здійсненні такого переходу, враховуючи при цьому вимоги, особливості та умови вітчизняних закладів. Почати побудову такої термінологічної системи слід з предметної області діагнозів як найважливішої для пріоритетних задач аналізу лікувально-діагностичної практики та створення стандартів страхової медицини.
В другому розділі надано побудовану структурно-інформаційну модель дослідження та визначені основні етапи і задачі дослідження.
Основним методом при розробці технології класифікації клінічних діагнозів є формалізація клінічного діагнозу в рамках семантико-синтаксичної моделі відповідно визначеним вимогам до застосування в ЛПЗ України.
Визначено методику моделювання клінічного діагнозу, яка складає три рівня: 1) рівень абстрактної моделі яка об'єднує семантичну та синтаксичну складові та дозволяє віднести мову опису класифікації до формалізованих мов, визначити її переваги і недоліки, можливі шляхи розвитку і інтеграції з іншими термінологічними системами; 2) рівень фреймової репрезентації, який інтегрує дві формальні моделі, використовуючи поняття фреймів, слотів, граней та дозволяє спростити і удосконалити структурну та функціональну складові класифікації; 3) рівень концептуальної та даталогічної моделі (у контексті об'єктно-орієнтованого проектування), які визначають основні класи, їх відношення, атрибути і методи, тобто структурну і функціональну складові контуру класифікації.
Обґрунтовано застосування апарату логіки предикатів і дескрипційних логік для формалізації семантичної складової та апарату граматик Хомського для формалізації синтаксичної складової моделі клінічного діагнозу.
Для розробки і реалізації контуру класифікації та всієї госпітальної системи визначено найбільш ефективним еволюційний підхід і тісно пов'язану з ним технологію об'єктно-орієнтованого аналізу та проектування інформаційних систем. Стосовно методів розробки госпітальної інформаційної системи визначено переваги і обґрунтовано застосування метаінформаційного підходу для проектування та реалізації підсистем статистики і аналітики ГІС в рамках шаблону Protected variations.

В третьому розділі визначено вимоги до класифікації клінічних діагнозів стосовно лікувального закладу України, серед яких основними слід вважати: компактність надання множини клінічних діагнозів, базуючись на композиційній архітектурі класифікації; врахування семантичних особливостей, пов'язаних із задачею формування семантично-коректних понять; наявність механізмів формування синтаксично-правильних описів діагнозів. На базі визначених вимог та форми клінічного діагнозу надається загальна формальна модель клінічного діагнозу з використанням логіки предикатів:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

Група клінічних діагнозів які відрізняються різноманітними клінічними проявами, може бути описана у вигляді фрейму, тобто деякої структури, що описує безліч ситуацій, які можуть мати місце при формуванні діагнозу. Ядром кожного такого фрейму має бути визначена нозологія або клас захворювань, у якості якого може виступати один з елементів статистичної класифікації ? міжнародної класифікації хвороб D(K) (1), і при цьому фрейм діагнозу не може бути порожнім (2). Фрейм діагнозу F(d) містить слоти клінічних характеристик Zi і слова-константи, що не залежать від слоту КХ С0 (3). Слот КХ(4,5) містить у собі знаки-роздільники Ii: I1i,I2i, змінні КХ Xi, знаки які визначають обов'язковість, умовність і можливість наявності декількох значень даної КХ одночасно Si:s1i,s2i,s3i, слова-константи які відносяться до змінної Cx: С1i2i, слова-константи C3i за слотом КХ, ряд вкладених слотів зі змінними P(Xi). Вкладений слот P(Xi) залежить від виконання відношення R(Ii,Si,Xii) (6). Кожній змінній як основної, так і залежної клінічної характеристики, відповідає хоча б одне можливе значення даних D(Xi) (7,8), D(Xij) (9). Значення основної змінної КХ D(Xi) може бути простим xik і комплексним F(Xi) (8), а значення залежної змінної (КХ) D(Xij) ? тільки простим xijm (9). У випадку комплексного значення змінної маємо справу з фреймом другого рівня F(Xi) (10), модель якого еквівалентна F(d). Особливістю фрейму другого рівня є виключення зон залежних КХ (11). Як дані D(Xij) пов'язані з клінічними характеристиками фрейма другого рівня, можуть виступати тільки прості значення xils (12).

Семантикою формальної моделі є множина клінічних діагнозів, яка може бути представлена у вигляді набору формул, основаних на аксіомах, що виступають в ролі метамови і вказують на засоби та шляхи побудови цих формул. Доменом інтерпретації цих формул є скінчена кількість класів клінічних діагнозів та їх клінічних характеристик.
Наступним кроком є побудова модель синтаксичної складової класифікації яка складається з множини граматик, кожна з яких є компактним записом усіх варіантів певного діагнозу. Мета-модель, яка полягає в основі моделей (граматик) і здатна відображати як загальний процес трансформації деякої кодової комбінації в Т-термінальний ланцюжок (натурально-мовне описання клінічного діагнозу), або порядок завдання деякого діагнозу за правилами граматики, так і можливу структуру шаблону діагнозу, що задає відповідну граматику, описана правилами (13)-(25).
Кожний клінічний діагноз може бути віднесеним до одного з шаблонів, пов'язаним зі статистичним діагнозом (нозологією МКХ-10):
. (13)
Правило (14) показує структуру шаблону, яка складається з початкового термінального рядка бi, який може бути пустим, тобто віднесеним до множини терміналів з пустим ланцюжком, та набору слотів-атрибутів, пов'язаних з даним шаблоном:
. (14)
Правило (15) показує структуру набору слотів-атрибутів розширеного опису діагнозу, пов'язаного з кодом Ki :
. (15)
Правило (16) показує синтаксичну структуру слота, де l1,l2 - термінальні символи, які визначають границі слоту, Рij - ядро слоту, - термінальні рядки, - залежні слоти з аналогічною структурою:
. (16)
Правила (17-21) показують варіанти структури слота. Додаткові знаки „*” і „!” вказують на обов'язковість підстановки одного зі значень замість нетермінального символу. Знак „&” вказує на можливість підстановки декількох значень нетермінального символу одночасно. Знак розширеної нотації формальних граматик „+” означає обов'язкову підстановку одного або декількох значень замість нетермінального символу.
(17)
(18)
(19)
(20)
. (21)
Правила (22-23) описують варіант залежності слотів у шаблоні (слоти Уik і Уil залежать від Уij) у разі обов'язкової та необов'язкової клінічної характеристики. Відповідні правила для формул (19)-(20) будуються аналогічним чином.
(22)
(23)
Правило (24) визначає варіанти значень нетермінального символу, якими можуть бути як термінальні символи, так і певна кількість шаблонів-значень ()
. (24)
Шаблон-значення може бути організований з m-1 слотів-атрибутів, де m - кількість нетермінальних символів в алфавіті, які визначають клінічні характеристики діагнозу
. (25)
Отже, модель синтаксичної складової класифікації формується множиною граматик, кожна з яких є компактним записом усіх варіантів визначеного діагнозу.
Таким чином, описана модель визначає синтаксичну складову слоту клінічної характеристики, її компоненти, їх порядок у слоті та у фреймі: залежні слоти; нетермінальні символи; термінальні рядки, що можуть існувати перед клінічною характеристикою, після неї, та взагалі після слоту; правила трансформації.
Модель семантичної складової класифікації формується на базі дескриптивної логіки, що дозволяє віднести мову опису класифікації до формалізованих мов, визначити її переваги і недоліки, можливі шляхи розвитку. Дана модель зводиться до термінологічної аксіоми спадкоємства, а також до набору конструкторів концептів клінічного діагнозу (табл. 1,2). Таким чином, логіку класифікації клінічних діагнозів віднесено до підмножини мов ???? без можливості використання оператора “обмеження на існування”.
Таблиця 1
Конструктори концептів клінічної класифікації діагнозів
Оператор
Нотація дескрипційної логіки
Вершина сіті
За межами сіті
Кон'юнкція
Імплікація
Обмеження на значення
Обмеження на мінімальне число значень
Обмеження на максимальне число значень
Таблиця 2
Відповідність конструкторів концептів запропонованої класифікації
Спрощена Нотація
Приклад
Нотація логіки ????
Опис
*Axis
{*F}
фаза захворювання
Необов'язкова клінічна характе-ристика діагнозу
{*Axis1
{*Axis2}}
{*T{*F}}
Характеристика F може бути задана, якщо задана характе-ристика T
Axis&
{*O&}
ускладнення
Можливість завдання декількох значень характеристики одночасно
!Axis
{!T}
ст. важкості
Обов'язкова характеристика
Формалізмом, здатним описати семантично-синтаксичну модель клінічного діагнозу, є фреймова і, відповідно, об'єктно-орієнтована мови опису знань. Фреймова модель класифікації є композицією наступних складових: аксіом та переліку конструкторів, здатних описати фрейм-концепт(табл.1,2); структури слоту з визначенням відповідних граней (табл.3); функціональної складової класифікації, яка може бути визначена як набір команд мови керування класифікацією та базується на перших двох складових. Основу функціонального рівня класифікації складають команди управління фреймовою мережею класифікації на основі описаної структури. Серед особливостей відзначимо наявність команд завдання абстрактних фреймів, які складаються з певної множини слотів характеристик, успадкування від абстрактних фреймів тощо. Так, процес успадкування від абстрактного фрейму формально описується як правило:
, де F ? абстрактний фрейм, C ? фрейм, F.S - множина слотів супер-фрейму, Copy - предикат, що описує процес копіювання відповідної частини мережі, яка пов'язана з успадкованим слотом, GT - предикат, який описує синтаксичну трансформацію термінів при успадкуванні на основі описаних правил GTRules для даного слоту.
Таблиця 3
Загальна структура слоту
Ім'я грані слоту
Опис грані слоту
SuperSlot
Слот, від якого наслідується даний
MemberSlot
Ідентифікатор слоту
SlotIsDependentOf
Слот, від якого даний залежить
ValueClass
Ім'я концепту (фрейму), з яким задається відношення
Cardinality.Min
Обмеження на мінімальну кількість значень
Cardinality.Max
Обмеження на максимальну кількість зна-чень
OrderInFrame
Порядок слоту у фреймі
OrderInSlot
Порядок підпорядкованого слоту в слоті
DirectionForOrderInSlot
Покажчик напрямку місцезнаходження підпорядкованого слоту в слоті
TerminalString1
Термінальний рядок перед клінічною характеристикою
TerminalString2
Термінальний рядок за клінічною характеристикою
TerminalString3
Термінальний рядок, який стоїть за слотом у фреймі
Перехід до об'єктно-орієнтованої моделі здійснюється наступним чином: структурна частина отриманої фреймової репрезентації відображається на даталогічну модель, а функціональна ? на об'єктно-орієнтовану модель, яка описує контур керування класифікацією.
Концептуальна модель класифікації надана на рис. 1. Основою класифікації є композиція класів Frame та Slot, що відповідає за репрезентацію фреймової мережі клінічних діагнозів. Особливістю моделі є використання циклічного зв'язку на базі шаблону Composite, що дозволяє репрезентувати мережу з необмеженою кількістю рівнів ієрархії „частина-ціле”. Залежність слотів у рамках фрейму (конструктор імплікації слотів) визначається циклічним зв'язком класу Slot, що дозволяє задати нескінчену кількість вкладених слотів. Класи AFrameFrame та AFrameSlot відповідають за реалізацію механізму успадкування фреймів-концептів від абстрактних фреймів, при цьому передбачається можливість реалізації часткового успадкування. Важливою особливістю при реалізації успадкування є існування механізму граматичної трансформації філерів визначеного слоту, при якому зі значенням слоту абстрактного фрейму можуть бути пов'язані схеми граматичної трансформації, які визначаються композицією класів GT, GTItem, GTTypeID: клас GT визначає схему трансформації; клас GTItem визначає елементарну трансформацію в рамках фрейму-значення; GTType визначає тип трансформації. Елементарною трансформацією можна вважати заміну вказаних маркерів (Marker) в значенні атрибуту TS0 відповідного фрейму на фразу (Description) за визначеною схемою. Клас Axis відповідає за репрезентацію осей класифікації, тісно пов'язаних з визначенням слотів фреймів. Класи ICD, ICDFrame відповідають за зв'язок з МКХ-10.
Структура таблиці „фрейми” складається з наступних атрибутів: ID - ідентифікатор фрейму; SlotID - ідентифікатор слоту, значенням якого є фрейм; Element - номер характеристики даного класу для даного слоту; TS0 - значення у випадку примітивного концепту або термінальний рядок символів, який передує першому слоту, у разі комплексного, Note - додатковий атрибут для більш детального опису значення характеристики. Структура таблиці „слот” еквівалентна таблиці 3 з доданням атрибуту FrameID, який визначає до якого фрейму відноситься даний слот.
Визначено умови та вимоги до функціональної складової класифікації, які зведено до чотирьох пакетів: робота з класифікацією, робота з базою пацієнтів, взаємодія з іншими термінологічними системами і пошук та аналіз даних по пацієнтам. Побудовано алгоритми та класи керування класифікацією, основними з яких є: CClassificationEntry (репрезентує суб-мережу визначеного фрейму), СNotation (відповідає за нотацію), CCode (відповідає за репрезентацію ієрархічного коду), CFrameValue (відповідає за роботу з фреймом-значенням слоту), CDecoder (відповідає за декодування коду клінічного діагнозу) тощо. Алгоритми пов'язані з обробкою мережі та базуються на використанні механізмів рекурсії, яка виконується логікою програми (переклад на рівень БД не є реальним).
Для того, щоб проаналізувати можливість інтеграції розробленої класифікації з сучасними термінологічними системами, сформовано формальну модель узагальненої термінологічної системи з використанням апарату логіки предикатів, яка об'єднує запропонований підхід з підходами SNOMED CT, UMLS.
Термінологічна система (ТС) надає загальну множину концептів, визначень та термінів (синонімів), які відповідають тим чи іншим концептам та атрибутам, і забезпечує пріоритетну семанти-чну складову загальної системи: ієрархічні стосунки, стосунки „частина-ціла”, логічне озна-чення концептів. Визначення концепту описують його зміст: можливі атрибути, що задають характерис-тики концепту, родові стосунки або стосунки „частина-ціле”. Атрибут “PostOperation” посила-ється на логічну операцію, за допомогою якої склада-ється означення концепту; у разі підтримки ТС декількох логічних операцій можливо додання ще декіль-кох атрибутів задля можливості реалізації формули з дужками.
Розроблена класифікація відповідає за додатковий рівень обмежень щодо семантики описаного діагнозу та за граматичну інтерпретацію. Надбудова даної класифікації пов'язана з термінологічною системою за прави-лом: кожний фрейм (значення) розробленої класифікації має відображення на концепт термінологічної системи, та кож-ний слот має бути відображеним на атрибут ТС. Слід особливо відзначити блок класів FrameCon-straint, SlotConstraint, ValueConstraint, TypeOfConstraint, які вирішують задачу вилучення несумісних концептів-характеристик у рамках одного формулювання діагнозу. Так, FrameConstraint вказує на існування обмежень та на їх характер у вигляді: „ и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.