Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Означення основн властивост нтеграла Стлтьєса, його звязок, особливост вдмнност вд нших визначених нтегралв загальн умови снування. Приклади застосування нтеграла для розвязку рзних класв задач. Узагальнення нтегралу Рмана.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 21.05.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


27
Міністерство освіти і науки України
Полтавський державний педагогічний університет

імені В.Г. Короленка

Кафедра математичного анілізу та інформатики

Курсова робота з математики

ІНТЕГРАЛ СТІЛТЬЄСА

Виконала студентка групи М-41

Лозицька Тетяна Петрівна

Науковий керівник

канд. фіз.-мат. наук, доцент

Кононович Тетяна Олександрівна

Полтава-2008

ЗМІСТ

    ВСТУП
    §1.Визначення інтегралу Стілтьєса
    §2. Існування інтегралу Стілтьєса
    2.1. Загальні умови існування інтегралу Стілтьєса.
    2.2. Класи випадків існування інтегралу Стілтьєса
    §3. Властивості інтегралу Стілтьєса
    §4. Інтегрування за частинами
    §5.Зведення інтеграла Стілтьєса до інтегралу Рімана
    §6. Обчислення інтегралів Стілтьєса
    §7. Приклади обчислення інтеграла Стілтьєса
    §8.Граничний перехід під знаком інтеграла Стілтьєса
    ВИСНОВКИ
    СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

ВСТУП

Інтегрування у XIX сторіччі в основному пов'язано з теорією тригонометричних рядів. Інтеграл Стілтьєса виник в зовсім новій, нетрадиційній області, а саме в теорії ланцюгових дробів, залишаючись в межах цієї теорії він був частиною мало помітною, специфічним узагальненням інтеграла Рімана. Таким він був близько 15 років. Ф. Пісс в 1910 р. надрукував замітку, змістом якої була формула, яка виражала інтеграл Стілтьєса від неперервної функції f(x) через інтеграл Лебега від деякої сумовної функції другого аргументу.

Лебег пропонує на основі даного ним представлення інтеграла Стілтьєса визначити інтеграл Стілтьєса від розривної функції. У 1914р. Юнг показав, що метод монотонних послідовностей, застосований до інтеграла Стілтьєса, досить просто призводить до того ж узагальнення.

У зв'язку з переходом в простір більшого числа змінних до кінця сформулювалась точка зору на інтеграл, як на функцію множини. Така точка зору стала особливо родючою для теорії і дозволила серед множини визначень виділити таке поняття диференціювання, в термінах якого ця теорія набуває єдиної форми, незалежно від кількості змінних.

Дана тема представлена в інтегральному численні і вивчається як додатковий розділ курсу математичного аналізу.

Метою роботи є вивчення умов існування, властивостей, методів обчислення інтеграла Стілтьєса. Відповідно до мети поставлені наступні завдання:

1. Ввести означення інтегралу Стілтьєса.

2. Визначити умови його існування та класи інтегрованих за Стілтьєсом функцій.

3. Вивчити процес зведення інтегралу Стілтьєса до інтегралу Рімана.

4. Розглянути приклади обчислення та граничний перехід під знаком інтегралу Стілтьєса

§1. Визначення інтегралу Стілтьєса

Інтеграл Стілтьєса (Th.J. Stieltjes Томас Іоанес Стілтьєс (нідерл. Thomas Joannes Stieltjes, 29.12.1856, -- 31.12.1894 Тулуза) -- нідерландський математик.

Запрпонував у 1894 р. узагальнення визначеного інтегралу (Інтеграл Рімана-Стілтьеса). Член-кореспондент Петербурзької Академії наук (1894).) - є безпосереднім узагальненням звичайного інтегралу Рімана. Визначається він наступним чином:

Нехай на проміжку [a,b] задані дві обмежені функції f(x) і g(x). Розкладемо точками

(1)

проміжок [a,b] на частини і покладемо . Обравши у кожній з частин [] (i=0,1,…,n-1) за точкою обрахуємо значення функції f(x) і помножимо його на відповідний проміжку [] приріст функції g(x)

Нарешті, складемо суму всіх таких добутків:

(2)

Ця сума має назву суми Стілтьєса.

Скінченна границя суми Стілтьєса , коли прямує до нуля називається інтегралом Стілтьєса функції f(x) no функції g(x) и позначається символом

(3)

Іноді, коли необхідно підкреслити, що інтеграл розглядається у сенсі Стілтьєса, вживають позначення

(S) або

Границя тут розуміється в тому ж сенсі, що і у випадку зі звичайним визначеним інтегралом. Точніше кажучи, число I називається інтегралом Стілтьєса, якщо для будь-якого числа > 0 існує таке число >0, що як тільки проміжок [a,b] розбитий на частини так, що , одразу ж виконується нерівність , яким би чином не обиралися точки у відповідних проміжках.

При існуванні інтеграла (3) також говорять, що функція на проміжку інтегровна по функції . Очевидно, що єдина відміна даного визначення від звичайного визначення інтегралу Рімана полягає в тому, що множиться не на приріст незалежної змінної, а на приріст другої функції. Таким чином, інтеграл Рімана є частковим випадком інтегралу Стілтьєса, коли в якості функції взято саму незалежну змінну : = [1;8]

§2. Існування інтегралу Стілтьєса

2.1 Загальні умови існування інтегралу Стілтьєса

Встановимо загальні умови існування інтегралу Стілтьєса, обмежуючись припущенням, що функція монотонно зростає.

Звідси слідує, що при тепер всі , подібно тому, як раніше було . Це дозволяє послідовно замінюючи лише на повторити всі побудови.

Аналогічно до сум Дарбу, і тут доцільно ввести суми

, ,

де і Mi означають, відповідно, нижню і верхню точні межі функції в - тому проміжку . Ці суми будемо називати нижньою і верхньою сумами Дарбу-Стілтьєса. Перш за все, ясно, що (при одному й тому самому розбитті) , причому і служать точними межами для стілтьєсових сум . Самі ж суми Дарбу-Стілтьєса мають дві наступні властивості:

1. Якщо до наявних двох точок розбиття додати нові точки, то нижня сума Дарбу-Стілтьєса може від цього лише зрости, а верхня сума - лише зменшитися.

2. Кожна нижня сума Дарбу-Стілтьєса не перебільшує кожної верхньої суми, хоча б і такій, що відповідає іншому розбиттю проміжку.

Якщо ввести нижній і верхній інтеграли Дарбу-Стілтьєса:

= і ,

то виявляється, що .

Нарешті, за допомогою сум Дарбу-Стілтьєса легко встановити для випадку, що розглядається, основну ознаку існування інтегралу Стілтьєса:

Теорема. Для існування інтегралу Стілтьєса необхідно і достатньо, щоб виконувалося

, або , (4)

якщо під , як зазвичай, розуміти коливання функції в -му проміжку .

2.2 Класи випадків існування інтегралу Стілтьєса

1. Якщо функція а функція має обмежену зміну, то інтеграл Стілтьєса

(5)

існує.

Спочатку припустимо, що монотонно зростає, тоді за довільно заданим , враховуючи рівномірну неперервність функції , знайдеться таке , що на будь-якому проміжку, довжина якого менше , коливання буде менше за . Нехай тепер проміжок розбитий на частини так, що . Тоді всі < і

,

звідки й слідує виконання умови (4), а, отже, і існування інтеграла також.

У загальному випадку, якщо функція має обмежену зміну, її можна представити у вигляді двох зростаючих обмежених функцій: . У відповідності до цього, перетворюється і сума Стілтьєса, що відповідає функції :

Так, за вже доведеним, кожна із сум і при прямує до граничної межі, це справедливо і відносно суми , що і треба було довести.

Можна послабити умови, що накладаються на функцію якщо одночасно посилити вимоги до функції :

2. Якщо функція інтегровна на проміжку за Ріманом, а задовольняє умові Ліпшиця:

(6)

,

то інтеграл (5) існує.

Для того, щоб знов мати можливість застосувати встановлений вище критерій, припустимо спочатку функцію як таку, що не лише задовольняє умові (6), але і монотонно зростаючу.

Враховуючи (6), очевидно , так, що

Але остання сума при і сама прямує до нуля, як наслідок інтегровності (за Ріманом) функції , а тоді прямує до нуля і перша сума, що доводить існування інтеграла (5).

У загальному випадку функції , що задовольняє умові Ліпшиця (6), представимо її у вигляді різниці

=.

Функція =, очевидно, задовольняє умові Ліпшиця, і в той же час монотонно зростає. Теж саме справедливо і для функції =, так як в силу (6), при

і

.

У такому випадку міркування завершено, як і в попередньому випадку.

3. Якщо функція інтегровна за Ріманом, а функцію можна представити у вигляді інтеграла зі змінною верхнею межею інтегрування:

, (7)

де абсолютно інтегровна на проміжку , то інтеграл (5) існує.

Нехай , так, що монотонно зростає. Якщо інтегровна за власним змістом, і виходячи з цього, обмежена: , то для маємо .

Таким чином, у цьому випадку задовольняє умові Ліпшиця, та інтеграл існує в силу (2).

Припустимо тепер, що інтегровна у невласному сенсі. Обмежимося випадком однієї особливої точки, скажімо . Перш за все, за довільно взятим вибираємо так, щоб було

, (8)

де - загальне коливання функції на розглядуваному нами проміжку.

Розіб'ємо проміжок довільно на частини і складемо суму

.

Вона розкладається на дві суми , з яких перша відповідає проміжкам, що цілком містяться в проміжку , а друга - решті проміжків. Останні, скоріш за все, містяться в проміжку , якщо тільки ; тоді в силу (8),

.

З іншого боку, так як на проміжку функція інтегровна у власному сенсі, то за доведеним, при достатньо малому і сума стане меншою за . Звідси слідує (4), що і потрібно було довести.

У загальному випадку, коли функція абсолютно інтегровна на проміжку , ми розглянемо функції

,

очевидно, невід'ємні і інтегровні на даному проміжку. Так як

,

то питання зводиться до вже розглянутого випадку.

ЗАУВАЖЕННЯ. Нехай функція неперервна на проміжку і має, виключаючи лише скінчене число точок, похідну , причому ця похідна інтегровна (у власному чи невласному змісті) від до ; тоді, як відомо, має місце формула (7):

.

Якщо абсолютно інтегровна, то до функції повністю справедливо все викладене в п. 3.[1;3]

§3. Властивості інтегралу Стілтьєса

З визначення інтегралу Стілтьєса безпосередньо випливають такі його властивості:

1. ;

2. ;

3. ;

4. .

При цьому у випадках 2, 3, 4 з існування інтегралів у правій частині випливає існування інтеграла у лівій частині. Далі маємо

5. ,

у припущенні, що і існують всі три інтеграли.

Для доведення цієї формули достатньо включити точку с в число точок розбиття проміжку , при складанні суми Стілтьєса для інтегралу .

Перш за все, з існування інтеграла уже випливає існування обох інтегралів і .

Для своєрідного граничного процесу, за допомогою якого для стілтьєсової суми отримується інтеграл Стілтьєса, має місце принцип збіжності Больцано-Коші. Таким чином по заданому враховуючи існування інтеграла знайдеться таке , що будь-які дві суми і , яким відповідають і , різняться менш ніж на . Якщо при цьому у склад точок розбиття включити точку с, а точки розбиття, що припадають на проміжок , брати в обох випадках одними й тими самими, то різниця зведеться до різниці двох сум Стілтьєса, що належать вже проміжку , бо решта доданків взаємно скорочуються. Застосовуючи до проміжку і обрахованим для нього стілтьєсовим сумам той же принцип збіжності, зробимо висновок про існування інтеграла . Аналогічним чином встановлюється і існування інтегралу . Але, важливо відмітити, що з існування обох інтегралів і , взагалі кажучи, не випливає існування інтегралу . Щоб упевнитися в цьому, достатньо розглянути приклад. Нехай на проміжку функції і задані наступними рівностями:

Легко побачити, що інтеграли

обидва існують і рівні 0, бо відповідні суми Стілтьєса всі рівні 0: для першого це випливає з того, що завжди =0, для другого - з постійності функції , завдяки чому =0.

У той же час інтеграл не існує. Дійсно, розіб'ємо проміжок так, щоб точка 0 не потрапила у склад точок розбиття, і складемо суму:

.

Якщо точка 0 потрапляє в проміжок , так, що , то в сумі залишиться лише один -й доданок; решта будуть нулі, тому що для . Отже,

.

В залежності від того, чи буде або , виявиться або , так що границі не має

Вказана своєрідна умова пов'язана з наявністю розривів у точці для обох функцій і . [8]

§4. Інтегрування за частинами

Для інтегралів Стілтьєса має місце формула

- (8)

в припущенні, що існує один з цих інтегралів; існування іншого звідси вже випливає. Ця формула носить назву формули інтегрування за частинами. Доведемо її.

Нехай існує інтеграл . Розклавши проміжок [а, b] на частини [xi , xi+1] (i = 0, 1, ..., n -- 1), оберемо в цих частинах довільно по точці таким чином, що

Суму Стілтьєса для інтеграла

можна представити у вигляді

Якщо додати або відняти зправа вираз то перепишеться так:

Вираз у фігурних дужках представляє собою стілтьесову суму для інтеграла (існування якого припущено!). Вона відповідає розбиттю проміжку [а, b] точками ділення якщо в якості обраних з проміжків точок узяти xi, а для проміжків , відповідно, а і b. Якщо, як зазвичай, покласти то тепер довжини всіх частинних проміжків не перевищать .

При сума у квадратних дужках прямує до , з чого слідує, що існує границя і для , тобто інтеграл і цей інтеграл визначається формулою (9). [8]

§5. Зведення інтеграла Стілтьєса до інтегралу Рімана

Нехай функція f(x) неперервна на проміжку [a, b], a g(x) монотонно зростає в цьому проміжку, і притому в суворому сенсі. Тоді, як показав Лебег (Н. Lebesgue), інтеграл Стілтьеса за допомогою підстановки безпосередньо зводиться до інтегралу Рімана.

Доведемо тепер, що

(10)

де останній інтеграл береться у звичайному сенсі, його існування забезпечено, так як функція g(v), а з нею і складна функція f(g-1(v)) неперервні.

Для цього розкладемо проміжок [а, b] на частини за допомогою точок ділення

a=x0<x1<…<xi<xi+1<…<xn=b

и складемо стілтьесову суму

Якщо покласти vi = g(xi) (i = 0, 1, . . ., n), то будемо мати

v0<v1< ... <vi< vi+1 < ... <vn = V.

Так як хi = g-1 (vi), то

Цей вираз має вигляд ріманової суми для інтеграла

Маємо

і



Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.