На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Шпаргалка Шпаргалка по "Технике и технологии СМИ"

Информация:

Тип работы: Шпаргалка. Добавлен: 26.04.2012. Сдан: 2011. Страниц: 16. Уникальность по antiplagiat.ru: < 30%

Описание (план):


   Основные  сведения о технических  средствах
   радиовещания 

   РАДИО (от лат. radio — излучаю, испускаю лучи radius — луч) — это способ беспроволочной передачи сообщений на расстояние посредством  радиоволн. 

   До  возможности передачи электрических  сигналов оптический телеграф являлся наиболее оперативным и распространенным средством связи. Например, во Франции к середине XIX века действовали 550 башен оптического телеграфа для связи 28 наиболее крупных городов. Информация в таком телеграфе, изобретенном французским механиком Клодом Шаппом (1763-1805), передавалась посредством семафорной азбуки, могла преодолеть расстояние между Петербургом и Варшавой (1200 км) за 15 мин. И все же для успешного функционирования капиталистического государства требовалась более скоростная связь. В XIX в. появляются электрические способы передачи сообщений. Изобретателем электрического телеграфа стал русский ученый, электротехник и востоковед Павел Львович Шиллинг (1786-1837), В 1832 г. он создал клавишный телеграфный аппарат и на основе его — систему электромагнитного телеграфа. Демонстрацию стрелочного телеграфа П. Л. Шиллинг осуществил на своей квартире на Марсовом поле, передав на расстояние более 10 метров телеграмму из 10 слов. Известный американский художник Сэмюэл Финли Бриз Морзе (1791-1872) в 1838 г. разработал телеграфный код (код Морзе), состоящий из точек и тире, ставший прообразом современного цифрового кода. А уже к 1850 г. русский физик и изобретатель в области электротехники академик Борис Семенович Якоби (1801-1874) «научил» телеграфный аппарат печатать буквы и цифры на бумажной ленте.
   В 1876 г. Александер Грэхем Белл (1847-1922) получил  патент в США на изобретенный им телефон. Микрофон преобразовывал звуковые колебания в электрик ческие сигналы, которые могли передаваться на огромные расстояния по проводам, а затем в приемном телефонном аппарате сигналы преобразовывались в звук. Таким образом, стала возможна передача по проводам аналоговой речевой информации. Уже в 1878 г. в США (Нью-Хейвен) была построена первая телефонная станция.
   Следующим важным этапом в развитии связи было изобретение беспроводной передачи электрических сигналов. 

   Технические предпосылки изобретения  и реализации радиосвязи
   Александр Степанович Попов (1859-1905/06), преподаватель  физики и электротехники в минном офицерском классе (г. Кронштадт), после публикаций Г. Герца об электромагнитных волнах осуществил первую публичную демонстрацию радиосвязи 7 мая 1895 г. А. С. Попов изобрел радиоприемник, который в дальнейшем оказался пригодным для записи грозовых разрядов. 12 марта 1896 г. исследователь передал первую в мире радиограмму: «Генрих Герц».
   В 1895 г. Гульельмо Маркони (1874-1937) впервые  передал без проводов на расстояние 2,4 км сигнал посредством азбуки Морзе, в качестве радиопередатчика используя  искровой излучатель Герца. В 1897 г. им была осуществлена радиосвязь с военным кораблем на расстояние 19 км. В 1897 г. Маркони зарегистрировал в Англии Компанию беспроводного телеграфирования и сигнализации, в 1899 г. основал Американскую компанию беспроводной и телеграфной связи, а в 1900 г. — Международную компанию морской связи. В декабре 1901 г. им была осуществлена радиотелеграфная передача через Атлантический океан.
   Споры о первенстве изобретения радиосвязи, или, как ее называли в то время, беспроводного телеграфа, не смолкают до сих пор. Видимо, они трудноразрешимы, так как А. С. Попов проводил свои опыты в обстановке секретности (этого требовало военно-морское ведомство), и не запатентовал свое открытие. Поэтому, например, энциклопедия «Британника» отдает первенство Г. Маркони, а Большая Советская энциклопедия — А.С. Попову. Обратимся к оценкам современников этого поистине великого изобретения, когда его история еще не была искажена политическими или экономическими факторами.  

   В 1895 году Попов во время исследования электрических разрядов в атмосфере придумал формирование телеграфных сигналов с помощью волн Герца; именно ему мы обязаны первым радиотелеграфным аппаратом. Маркони, впервые применивший антенну для передатчика, открыл новые пути практического использования беспроводной телеграфии. В то же время многочисленные изобретатели старались совершенствовать новое средство связи. Имена Брауна, Дюкре, де Фореста, Фессендена, Рижи, Слаби, Арко, Тесла известны всему миру. И этот список далеко не полон». 

   Физическая природа звука. Преобразование звука в электромагнитные колебания
   Звук  — колебательное движение частиц упругой среды, распространяющееся в виде волн; человек воспринимает звук с частотой от 16 гц до 20 000 гц. Звук с частотой ниже 16 гц называется инфразвуком, выше 20 000 гц — ультразвуком.
   Звуковые  колебания распространяются в пространстве, называемом звуковым полем. В каждую точку звукового поля поступает  множество звуковых волн, как прямых (от непосредственных источников звука), так и отраженных от различных предметов. Наложение волновых колебаний называется интерференцией, а способность звуковых волн огибать препятствия — дифракцией. За препятствием образуется акустическая тень.
   Человек воспринимает звуковые колебания посредством  слуховой системы: ушная раковина, подобно антенне, фокусирует и усиливает звуковой сигнал; среднее ухо выполняет функцию микрофона; внутреннее ухо — функцию слухового анализатора, а высшие отделы головного мозга напоминают преобразователь аналоговой информации в цифровую. Слуховое восприятие определяется восприятием громкости, высоты тона и тембра звука. Высота тона наиболее близко связана с частотой звука: чем больше частота, тем выше тон. Предельная громкость (интенсивность) звука может вызвать болевые ощущения, называемые болевым порогом. Минимальный порог слышимости находится на частотах 3 000-3 500 гц. Наибольший диапазон слышимости находится на средних частотах. Громкость звука связана с частотой, звуковым давлением и временем воздействия на слуховую систему. Тембр позволяет отличать звучание различных источников звука.
   Для осуществления радиовещания необходимо преобразовать звуковые колебания  в электрические сигналы, для  этого применяются микрофоны. Первую удачную попытку создания «механического уха» осуществил немецкий учитель физики Иоганн Филипп Рейс (1834-1874) в 1861 г. роль барабанной перепонки выполнял кусок кожи с укрепленной посередине пластинкой, имеющей углубление, наполненное ртутью. Под влиянием звуковых волн «перепонка» начинала колебаться, погружая или извлекая платиновый штифт из ртути. В цепи создавался прерывистый ток, под действием которого стальной стержень приемника намагничивался или размагничивался, создавая звучание. Поскольку устройство Рейса неудовлетворительно передавало тембр звука, оно не нашло практического применения. Усовершенствовать аппарат удалось американскому профессору Дэвиду Юзу (1831-1990) в 1878 г. Мембрана в микрофоне Юза давила на угольный порошок, изменяя сопротивление между электродами, таким образом, звуковые волны преобразовывались в электрические сигналы. Угольные микрофоны до сих пор используются в телефонии. 

   Радиочастотные  диапазоны
   Согласно  международной конвенции электросвязи (г. Монтре, 1965 г.), любые устройства и  радиостанции, излучающие электромагнитные волны, должны быть регламентированы. Мировое пространство в отношении распределения радиочастот делится на три района: первый — Европа и Африка, второй — Северная, Южная Америка и Гренландия, третий — Азия и Австралия. Россия и СНГ входят в состав первого района.
   Группа (или категория) качества — это совокупность свойств, обуславливающих заданные технологические характеристики .
   1. Высшая группа «0» — комплексы  по производству радиопродукции  в стереофоническом или (и)  монофоническом режимах в диапазоне  частот 40 Гц—15 кГц.
   2. Подгруппа «0ац» — комплексы  но производству радиопродукции  с аналого-цифровым оборудованием  (с применением цифровых устройств  записи-воспроизведения).
   3. Подгруппа «0а» — комплексы  по производству радиопродукции  с аналоговым оборудованием.
   4. Первая группа «1» — комплексы по производству радиопродукции в монофоническом режиме в диапазоне частот 50 Гц-10 кГц.
   Радиоволны  составляют электромагнитное поле, создаваемое  антенной системой в окружающем пространстве при питании ее током высокой  частоты. Распространение электромагнитного поля напоминает движение волн по поверхности воды и происходит с высокой скоростью — 300 000 км/сек. Радиоволны, распространяющиеся вдоль поверхности Земли, называются поверхностными, а под различными углами — пространственными. И те, и другие распространяются в атмосфере. Атмосфера неоднородна, нижний ее слой (10-15 км) называется тропосферой, а верхний — ионосферой (до 500-600 км от поверхности Земли). В обычном состоянии воздух не проводит электричество, но под воздействием солнечных лучей происходит ионизация слоев воздуха, отчего ионы могут поглощать, отражать или искривлять направление радиоволн. Это качество особенно заметно на высоте более 80-100 км. Пространственные радиоволны, проходя через различные слои атмосферы, способны менять свое направление: чем выше степень ионизации слоев воздуха, тем больше будет искривление радиоволн. Поверхностные радиоволны обладают способностью искривлять траекторию своего движения, как бы следуя кривизне Земли, это явление называется рефракцией. При встрече с небольшим препятствием волна стремится обогнуть его. Это явление называется дифракцией. Электромагнитные волны, используемые для различных видов радиосвязи в зависимости от их длины, подразделяют на следующие диапазоны:
   Длинные волны (AM) — километровые — длина волны 1-20 км; частота 148-408 КГц; амплитудная модуляция; первая категория качества (50 Гц-10 КГц); моновещание.
   Освоение  радиочастотного диапазона началось именно с длинных, точнее сверхдлинных волн, так как в качестве первых волновых излучателей использовались машинные генераторы. Основное преимущество длинных волн — способность огибать препятствия (дифракция), следовательно, длинные волны подходят для вещания в условиях городской застройки или горной местности. Дальность распространения сигнала зависит от мощности передатчика и совершенно не зависит от состояния ионосферы. Радиосвязь на длинных волнах возможна только при помощи поверхностных радиоволн.
   Прием радиовещания в данном диапазоне  стабилен и почти не зависит от времени суток и сезона. Максимальная дальность распространения длинных волн — 2000 км. Благодаря этому диапазону государственное радиовещание охватывает огромные территории нашей страны, включая малозаселенные районы Севера и Дальнего Востока. Тем не менее качество вещания зависит от промышленных помех и атмосферных явлений.
   Средние волны (AM) — гектометровые — длина волны 575-187 м; частота 535—1605 КГц; амплитудная модуляция; первая категория качества (50 Гц-10 КГц); моновещание.
   Степень поглощения этих волн ионосферой в значительной степени зависит от времени суток. Днем поглощение энергии средних волн значительно больше, чем в ночное время. Поэтому радиосвязь на большие расстояния за счет пространственной волны возможна только в вечернее и ночное время.
   Средние волны имеют достаточную дифракцию для распространения в условиях городской застройки, при этом уровень промышленных помех значителен. В непромышленных зонах качество вещания отвечает первой категории, в городах — значительно ниже. Дальность распространения сигнала зависит от состояния ионосферы: днем сигнал, отражаясь от ионосферы (при высокой концентрации электронов), возвращается на землю слишком слабым, а ночью (при низкой концентрации электронов в ионосфере) дальность распространения сигнала сильно увеличивается (до 2000 км).
   Мощность  применяемых передатчиков в диапазоне  средних волн в дневное время  может составлять 5-10 кВт, а в ночное время в принципе может быть снижена  в 10-20 раз.
   Короткие  волны (AM) — декаметровые — длина волны 90-11 м; частота 3,95-26,1 КГц; амплитудная модуляция; первая категория качества (50 Гц-10 КГц); моновещание.
   Распространение радиоволн в области приема земной волны из-за сильного поглощения почвой ограничено всего несколькими десятками  километров, поэтому главным достоинством KB является способность многократно отражаться от ионосферы и при малой мощности передатчиков распространяться на очень большие расстояния. Основная область применения — иновещание. Короткие волны являются пространственными.
   Диапазон KB состоит из нескольких поддипазонов от 75 до 11 метров. В верхней части дипазона (75-49 м) уровень промышленных помех чрезвычайно высок. В поддиапазоне от 41 до 19 метров промышленные помехи незначительны. А в нижней части диапазона (16-11 м) атмосферные и промышленные помехи практически отсутствуют.
   Короткие  волны используются для вещания  на зарубежные страны. «Дневной» поддиапазон (13, 16, 19 метров) используется в светлое  время суток, «ночной» (25, 31, 41, 49 и 75) — в темное время суток.
   Мощность  передатчиков (от 50 Вт до 1500 кВт) может изменяться в зависимости от времени суток: ночью, достигает максимальных значений, а с рассветом может быть снижена.
   Одним из недостатков считается явление  «замирания» радиоволн: сила принимаемого сигнала постепенно уменьшается, а  иногда и полностью прекращается. Это происходит потому, что радиоволны распространяются от передатчика по разным путям, под разными углами, и на радиоприемник могут прийти одновременно несколько волн; складываясь, они могут либо усиливать, либо ослаблять друг друга. Существуют участки Земли, где прием коротких волн иногда невозможен. В пространстве между местом, где прекращается прием поверхностной волны, и местом возвращения на Землю отраженной пространственной волны образуется зона молчания.
   В России короткие волны для вещания внутри страны почти не используются, основной объем вещания рассчитан на слушателей за рубежом. Для космической радиосвязи KB непригодны, так как ионосфера для них непрозрачна.
   Ультракороткие  волны (УКВ-1, УКВ-2 /FM/) — метровые — (длина волны 4,6-2,8 м; частота 65,9-108 МГц; частотная модуляция; высшая категория качества (30 Гц-15 КГц); стерео- или моновещание. Поверхностные и пространственные волны.
   FM-радиостанции (УКВ-2) появились в России сравнительно  недавно, но они очень быстро  завоевали своего слушателя высоким качеством звучания в эфире.
   В диапазоне метровых волн по существу представлено несколько поддиапазонов: УКВ-1 — 65,9-74 МГц; УКВ-2 — 87,5-108 МГц.
   Способность волны огибать препятствия в  УКВ диапазоне минимальна, сигнал может распространяться только
   в зоне прямой (почти оптической) видимости  между передающей и приемными  антеннами; данный диапазон свободен от атмосферных помех, а длят борьбы с промышленными и местными помехами (электродвигатели, системы зажигания  автомобилей и т.д.) применяется частотная модуляция. Для увеличения зоны прямой видимости передающие и приемные антенны поднимают на максимально возможную высоту. Обычно расстояние прямой видимости составляет 40-50 км, однако благодаря небольшой рефракции может достигать 60-80 км.
   УКВ диапазон идеален для вещания  в больших и средних городах, передатчики с мощностью от 2 до 15 кВт могут располагаться в  черте населенных пунктов и из-за небольшой стоимости быстро окупаться  коммерческими радиостанциями. Однако напряженность поля в метровом диапазоне неравномерна, так как прямые волны сталкиваются с отраженными от Земли и зданий волнами и в непосредственной близости от передатчика могут возникать звуковые искажения. Поэтому рекомендуется располагать передающие антенны на удалении от густонаселенных районов.
   Радиус  зоны обслуживания обусловлен исключительно  высотой передающей антенны. Для  расширения зоны вещания необходимо использовать ретрансляторы. УКВ волны  прозрачны для ионосферы, поэтому  в данном диапазоне может осуществляться космическая связь. 

   Структура радиостанции и ее оборудование
   Технической базой производства радиопродукции является комплекс оборудования, на котором  осуществляется запись радиопрограмм, обработка и последующая трансляция. Основной технической задачей радиостанций является обеспечение четкой, бесперебойной и высококачественной работы технологического оборудования радиовещания и звукозаписи.
   Работающие  в системе радиовещания и звукозаписи  лица не технических специальностей (журналисты, звукорежиссеры, режиссеры, дикторы, программно-редакционные работники) обязаны знать аппаратуру и технологию в объемах, необходимых для их практической работы.
   Радиодома и телевизионные центры являются организационной формой тракта формирования программ. Сотрудники радио и телецентров подразделяются на специалистов творческих (журналисты, звуко- и видеорежиссеры, работники отделов выпуска, отделов координации и т.д.) и технических специальностей — аппаратно-студийный комплекс (работники студий, аппаратных и некоторых вспомогательных служб). Аппаратно-студийный комплекс — это взаимосвязанные блоки и службы, объединенные техническими средствами, с помощью которых ведется процесс формирования и выпуска программ аудио- и телевещания. В состав аппаратно-студийного комплекса входят аппаратно-студийный блок (для создания частей программ), аппаратная вещания (для РВ) и аппаратно-программный блок (для ТВ).
   В свою очередь, аппаратно-студийный  блок состоит из студий и технических  и режиссерских аппаратных, что обусловлено  различной технологией непосредственного вещания и записи.
   Радиостудии — это специальные помещения  для проведения радиопередач, отвечающие ряду требований акустической обработки, чтобы поддерживать низкий уровень  шумов от внешних источников звука, создавать равномерное в объеме помещения звуковое поле. С появлением электронных устройств для регулирования фазовых и временных характеристик все большее применение находят небольшие полностью «заглушенные» студии.
   В зависимости от назначения, студии делятся на малые (эфирные) (8-25 кв.м), студии средней величины (60-120 кв.м), большие студии (200-300 кв.м).
   В соответствии с замыслом звукорежиссера в студии устанавливаются микрофоны, подбираются их оптимальные характеристики (тип, диаграмма направленности, выходной уровень сигналов).
   В студии могут находиться только лица, занятые непосредственно в данной передаче. При наличии на табло  сигнала «Микрофон включен» вход в студию запрещается. В исключительных случаях при наличии сигнала  «Микрофон включен « вход в  студию разрешается только в сопровождении выпускающего. При отсутствии сигнала вход в студии разрешается только с разрешения оператора эфирной аппаратной.
   Ведущий радиопередачи или диктор начинает передачу при наличии сигнала  «Все готово» или по команде оператора  эфирной аппаратной. Обо всех технических неисправностях или ошибках организационного характера диктор сообщает выпускающему и действует в соответствии с полученными указаниями.
   Монтажные аппаратные1 предназначены для подготовки частей будущих программ от несложного монтажа музыкальных и речевых фонограмм после первичной записи до сведения многоканального звучания к моно- или стереозвучанию. Далее в аппаратной подготовки программ формируются части будущей передачи из оригиналов отдельных произведений. Таким образом, формируется фонд готовых фонограмм. Из отдельных передач формируется вся программа, поступающая в центральную аппаратную. Отделы выпуска и координации осуществляют согласование действий редакций. В крупных радиодомах и телецентрах, чтобы обеспечить соответствие старых записей современным техническим требованиям вещания, существуют аппаратные реставрации фонограмм, где редактируется уровень шумов и различных искажений.
   После полного формирования программы  электрические сигналы поступают  в трансляционную аппаратную.
   Аппаратно-студийный  блок комплектуется режиссерским пультом, контрольно-громкоговорящим агрегатом, магнитофонами и устройствами звуковых эффектов. Перед
   входом  в студию устанавливают светящиеся надписи: «Репетиция», «Приготовиться», «Микрофон включен». Студии оборудованы микрофонами и пультом диктора с кнопками включения микрофонов, сигнальными лампами телефонными аппаратами со световым вызывным сигналом. Дикторы могут связаться с аппаратной, отделом выпуска редакцией, некоторыми другими службами.
   Главным устройством режиссерской аппаратной является пульт звукорежиссера, с помощью которого решаются одновременно и технические, и творческие задачи: монтаж и преобразование сигнала.
   В аппаратной вещания радиодома из различных передач формируется  программа. Части программы, прошедшие звукорежиссерскую обработку и монтаж, не требуют дополнительного технического контроля, но нуждаются в совмещении различных сигналов (речь, музыкальное сопровождение, звуковые заставки и т.д.). Кроме того, в современных аппаратных вещания устанавливается оборудование для автоматизированного выпуска программ.
   Конечный  контроль программ осуществляется в  центральной аппаратной, где на звукорежиссерском  пульте происходит дополнительное регулирование  электрических сигналов и их распределение по потребителям. Здесь производится частотная обработка сигнала, его усиление до требуемого уровня, сжатие или экспандирование, введение позывных программы и сигналов точного времени. 

   Подготовка  радиопередачи
   При работе в студии за технические требования к качеству продукции отвечают специальные сотрудники, тогда как при внестудийной записи практически все приходится делать самому журналисту. Именно он обязан выбрать тип и количество микрофонов, оптимизировать их расстановку для сведения к минимуму искажений в процессе записи.
   Сбор  материала
   Технология  сбора информации зависит от назначения и целей. Без предварительной  проработки материалов невозможно рассчитывать на то, что на этапе записи передачи журналисту хватит одной эрудиции. Необходимо просмотреть архивные текстовые материалы по проблематике будущей передачи, прослушать фонограммы («консервы» — профессиональный жаргон), провести переговорные процессы.
   Запись
   Надо  заметить, что сегодня распространена аналого-цифровая технология формирования передачи. Это объясняется тем, что частично традиционная аппаратура, например аналоговые микшерные пульты, до сих пор имеет технические преимущества перед цифровыми устройствами этого типа, а запись-воспроизведение и монтаж выполняются на «цифре». Необходимо помнить, что при аналоговой магнитной записи возникает основная доля искажений и шумов. Архивные записи, представляющие огромные массивы информации, хранятся пока в основном в аналоговом виде.
   Перед основной записью, в зависимости  от степени оперативности передачи, желательно провести предварительную запись. Расставить микрофоны, установить уровень сигналов и сделать пробную запись с контрольным прослушиванием.
   Наибольшую  сложность с технической точки  зрения представляет внестудийная запись, когда репортер может оказаться либо на открытом пространстве, либо в неприспособленном для записи помещении, В том и другом случае для качественной записи надо правильно выбрать тип микрофона.
   При возможности выбора надо постараться  найти помещение с допустимыми  акустическими характеристиками: желательно, чтобы комната по соотношению сторон приближалась к золотому сечению и в ней присутствовали звукопоглощающие предметы (шторы, мягкая мебель, ковры), то есть чтобы она не «гудела» от отражающихся звуков. Далее необходимо подобрать угол направленности микрофонов: чем уже будет диаграмма направленности, тем большие проблемы в работе будет испытывать звукорежиссер: малейшее отклонение от оси направленности говорящего — и в эфире может появиться «каша».
   Особые  сложности расстановки микрофонов встают перед журналистом и звукорежиссером при внестудийной записи музыкальных фрагментов. Теоретически в помещении можно найти геометрическую точку, обеспечивающую оптимальные параметры звучания, и в таком случае достаточно использования одного микрофона. Однако на практике это выполнимо далеко не всегда. В этом случае ищут зону с преобладанием прямых сигналов для расположения ближнего микрофона и зону «радиуса гулкости», где отношение уровня отраженного сигнала к уровню прямого равно единице (для общего микрофона). Нередко для оптимизации звучания используют «микрофон воздуха», который располагают за зоной радиуса гулкости.
   Запись  передачи на улицах, в аэропортах, вокзалах, во дворах всегда осложнена присутствием сильных посторонних шумов, поэтому журналист должен позаботиться о ветрозащите микрофона и уметь работать с суперкардиоидным микрофоном-пушкой. Выбор правильного поворота к источникам паразитических шумов (они не должны попадать на диафрагму микрофона) обеспечит наилучший уровень звучания. Чем меньше звуковых помех, тем шире диаграмма направленности должна быть у микрофона, иногда желательно, чтобы микрофон улавливал «эффект зала».
   В случае проведения внестудийного прямого  эфира наибольшую сложность представляет выбор канала связи со студией. По возможности надо избегать использования обычного телефона, так как частотных характеристик микрофонов недостаточно для вещания даже «разговорной» станции. При отсутствии возможности установить кабельный канал связи рекомендуется использовать репортофон -гибрид телефона и микшерного пульта, позволяющий подключать телефонную линию к эфирной аппаратной.
   Если  есть возможность, можно работать по «воздушке» — специальному временному проводу, натянутому по телеграфным  линиям или между домами от места репортажа до радиостанции, правда, в этом случае длина провода не должна превышать 1 км. Как известно, телефонные линии иногда бывают сильно «зашумлены», но нередко бывает возможность договориться с местными телефонными узлами о кроссировке линии, то есть выделении «прямых проводов».
   Монтаж
   После того как журналист произвел аудиозапись, необходимо произвести монтаж. Монтаж — это и творческий, и технический  процесс объединения материала  путем отбора, изменения очередности  звучания отдельных фрагментов фонограмм для формирования единого звукоряда. Монтаж связан с общей структурой передачи, из монтажных фраз и эпизодов строится композиция журналистского материала. Редактор определяет ориентировочную длительность передачи, планирует время выхода в эфир, поэтому фонограмму необходимо подогнать на заданный хронометраж, но в первую очередь нужно избавиться от лишних шумов, придыханий, слишком длинных пауз, слов-паразитов и т.д. Если позволяет время, фонограмма набирается в текстовом процессоре и редактируется.
   В зависимости от аппаратуры может применяться линейный или нелинейный монтаж. Линейный монтаж производится путем перезаписи сигнала с одного аналогового магнитофона на другой. Вначале расставляются монтажные метки для определения точек монтажа, вырезаются ненужные места, далее фрагменты фонограммы записываются в определенном порядке, при этом технические пара метры «мастера» — конечной записи — всегда ниже исходного материала. Выполнить линейный аналоговый монтаж под силу далеко не каждому журналисту. Как правило, это производится в монтажной аппаратной, где монтажник и репортер работают вместе.
   Нелинейный  монтаж осуществляется на компьютере (звуковой станции) при этом физической перезаписи фрагментов фонограммы не происходит — изменяется только последовательность адресов. Освоить технику нелинейного (цифрового) монтажа проще, так как фонограмма наглядно отображается на мониторе компьютера. Журналист не тратит время на объяснение задуманного монтажнику, готовя материал к эфиру. Редактирование звукоряда происходит без боязни неправильно «порезать» ленту и безвозвратно испортить исходные материалы.
   При аналоговой записи фонограммы использование  нелинейного монтажа возможно, но требует большего времени. Перевод  аналоговой записи в цифровой вид  требует реального времени (ровно столько, сколько шла запись фонограммы). Как правило, одновременно производится компрессия сигнала. К сожалению, техническая простота нелинейного монтажа в настоящее время снизила качество радиоматериалов. Узкий круг специалистов-монтажеров, режиссеров, прекрасно знающих помимо технических вопросов теорию монтажа, передает свои обязанности непрофессионалам (подобно тому как в периодической печати работу профессиональных наборщиков стали выполнять журналисты), но это процесс неизбежный, и, следовательно, за профессиональный монтаж (как и за правильность наборных процессов) должны отвечать сотрудники редакций.
   Для нелинейного монтажа не требуется  отдельная аппаратная, достаточно иметь  наушники и компьютер со звуковым редактором (типа Sound Forge).
   Формирование  передачи
   Радиопередача формируется с учетом информационных сообщений и рекламных вставок. Важным звеном для оптимизации управления цифровыми аудиомассивами являются данные о содержимом, без которых  трудно ориентироваться во внутреннем (непосредственные записи радиостанции) и внешнем (интернет, Гостелерадиофонд) звуковых архивах. Фонды фонограмм могут быть рабочими, оперативными или долговременными. В соответствии с этим подбираются и носители хранения аудиоинформации. I фонограммы подразделяются на первичные (оригиналы) и копии (дубль оригинала и вещательные копии).
   Технические средства для создания эффективного вещательного комплекса имеются, но основная проблема -уметь ими пользоваться, связать различные комплексы  в единую сеть, оптимально рассчитать нагрузку на аппаратуру. Данные о содержимом способствуют быстрому поиску информации путем введения в нее индексации. Они напоминают библиотечный каталог, выполненный в цифровом виде. В ближайшее время будет обращено огромное внимание на создание поисковых аудио- и видеосистем. Материалы, не имеющие точного описания и цифровой индексации, рискуют быть потерянными, так как никто не будет знать об их существовании. В каталогизатор вносятся ключевые слова о теме, времени и месте события, сведения о журналисте, герое события, собственнике информации и цифровом формате.
   Реклама может начитываться диктором в прямом эфире или воспроизводиться в  записи. Рекламные ролики, как правило, озвучиваются профессиональными актерами и записываются при участии звукорежиссера. Далее запись монтируется на звуковой станции, накладывается на музыкальное сопровождение, в нее могут вводиться различные звуковые шумы, и в конечном итоге она рассчитывается на необходимую длительность. При программировании вещательной сетки только новостные и рекламные блоки имеют жесткую длительность и периодичность.
   Из  студийных и внестудийных передач  формируется единый звукоряд (программа). Основная трудность стыковки различных  звуковых фрагментов — регулирование  соотношений громкости речи и  музыки. Для соединения кусов фонограммы нередко используются короткие музыкальные перебивки (джинглы). В конце концов сигнал подается на вещательное оборудование и согласно российскому закону о СМИ (1991 г.) обязательно записывается с дальнейшим хранением не менее одного месяца.
   В эфирных аппаратных должна быть предусмотрена  возможность выхода из нештатных  ситуаций, вызванных техническими или  организационными причинами. Для минимизации возможных пауз в эфире может быть использовано оперативное включение заранее подобранной музыки.
   Создание  информационных передач
   При подготовке информационных передач  в основном применяются цифровые технологии обработки и передачи данных. Запись производится на резервные  носители информации: компакт- или мини-диски, оптические диски или на традиционную магнитную ленту в цифровом формате. В более современном варианте запись ведется на жесткий диск компьютера или флэш-память: в этом случае не требуется дополнительное время перегонки материала в компьютерную сеть радиостанции.
   В соответствии с распоряжениями заведующего отделом информации корреспондент, ориентировочно зная длительность передачи и время выхода в эфир, приступает к записи. Состав радиожурналистского комплекта зависит от конкретной радиостанции и включает различные типы записывающих устройств (аналоговые или цифровые) и микрофоны или, для передачи сигнала с места события, репортофон. При получении информации от собственных корреспондентов для связи могут быть использованы мобильные телефоны, но качество связи будет невысоким. Крупные западные радиостанции для этих целей используют мобильные радиопередатчики со специально выделенными радиочастотами. Применение подобной аппаратуры обеспечивает качество высшей категории и сравнимо со студийной передачей.
   При записи информации на жесткий диск компьютера роль усилителя сигнала выполняет голосовой процессор, позволяющий вводить в запись дополнительные эффекты. Такие приборы применяются при невозможности обработки фонограммы в редакции (репортажи, прямые эфиры).
   Голосовой процессор позволяет качественно обработать car-нал и получить запись, пригодную для вещания.
   Отделы  информации обрабатывают огромное количество материала: новости от информационных агентств, материалы от региональных отделений и корреспонденции  от местных журналистов. Коммерческие станции, в отличие от государственных, как правило, не могут себе позволить иметь в штате собственных корреспондентов — они пользуются материалами с лент информационных агентств.
   Идеальный вариант — выдавать информацию с места события, но при этом в эфир могут попадать нежелательные куски. На практике радиостанции используют как вещание в записи, так и прямой эфир, то есть вещание в реальном масштабе времени без предварительной звукозаписи. После того как запись произведена, она (физически или по каналу связи) доставляется в радиодом, где ее редактируют: убирают ненужные паузы, придыхания, неудачные слова и выводят на заданный хронометраж.
   Государственные и частные радиостанции могут использовать различные технологии монтажа.
   Коммерческие  станции, как правило, используют более экономичную технологию: монтаж на звуковой станции осуществляет сам журналист. Чересчур длинные паузы удаляются автоматически, также возможно удалить некоторые нежелательные шумы. Работа в звуковом редакторе упрощается визуальным представлением фонограммы на мониторе компьютера. Слова-паразиты, междометия и т.д. отмечаются метками и удаляются. В звуковом редакторе есть возможность быстро (без разрезок и склеек) менять местами части звукоряда, увеличивать или уменьшать интенсивность звука, в разумных пределах ускорять или замедлять фонограмму, выводя на необходимый хронометраж, и даже избавляться от ненужных частот. Таким образом, на цифровых монтажных станциях информационные блоки одновременно готовят несколько журналистов. Далее окончательно сформированный материал собирается на редакционном сервере в единый эфирный выпуск и выдается прямо в эфир. 

   Основные  принципы звукозаписи
   Аналоговая  магнитная запись
   До  появления магнитной записи звука еще в 1877 г. Т. Эдисон патентует фонограф — устройство, в котором пишущая игла, управляемая мембраной, оставляла след на валике с оловянной фольгой. На основе фонографа в дальнейшем был изобретен граммофон и другие приборы с механической звукозаписью.
   Принципиально новый способ записи в 1898 г. предложил  датский изобретатель Вальдемар  Паульсен (1869-1942), работавший в копенгагенской телефонной компании. К тому времени  было известно о свойствах ферромагнитных материалов сохранять остаточное намагничивание, соответствующее напряженности магнитного поля, то есть при изменении параметра внешнего магнитного поля намагниченность материала изменялась и сохранялась неограниченное время. В качестве носителя информации В. Паульсен выбрал стальную проволоку, а в качестве преобразователя звука — телефонный микрофон. В 1900 г. на выставке в Париже им было продемонстрировано звукозаписывающее устройство — телеграфон, где магнитная головка скользила вдоль рояльной струны. Но современники не смогли оценить практическое значение данного изобретения, и фонограф по-прежнему продолжал доминировать над другими способами аудиозаписи.
   Однако  это не смутило В. Паульсена, и  он стал совершенствовать лентопротяжный механизм, чтобы проволока могла  наматываться на катушки, а магнитная головка оставалась неподвижной. Вскоре телеграфон мог записывать звук с продолжительностью 30 мин, но чрезмерный уровень шума и неудобство работы с проволокой привели к тому, что в 1918 г. производство телеграфонов было полностью прекращено. Широкое распространение магнитная звукозапись получает в 30-е гг. XX в., после того как немецкая компания BASF разрабатывает специальную долговечную и простую в обращении ленту на ацетатной основе, покрытую ферромагнитным порошковым слоем.
   В наше время плотность магнитной записи достигает немногим более 100 бит/см3, хотя теоретически этот параметр может быть повышен почти в 10 раз.
   В современных аналоговых студийных  магнитофонах скорость перемещения ленты относительно магнитной головки составляет 38,1 см/сек, в репортерских — 19,05 см/сек или 9,53 см/сек. Основным недостатком магнитной записи являются шумы, возникающие в основном из-за звуконосителя: мельчайшие частицы ферромагнитного порошка располагаются на лавсановом слое ленты неравномерно, соответственно возникает магнитная неоднородность (структурные шумы), кроме того, механический контакт ленты с магнитной головкой (записывающей или воспроизводящей) неодинаков (контактные шумы). 

   Цифровая  магнитная запись
   Основным  достоинством цифровой магнитной записи является отсутствие шумов ленты. В зависимости от способа записи цифровые магнитофоны могут писать сигнал относительно ленты продольно или наклонно-строчно. Качество наклонно-строчной записи выше, так как магнитная лента перемещается по вращающемуся барабану с несколькими магнитными головками. Для этого типа записи могут применяться R-DAT (Rotary Digital Audio Tape) устройства с вращающимися магнитными головками, обеспечивающие студийное качество звучания. Их целесообразно использовать для записи репортажей, но они малопригодны для монтажа и выведения сигнала в эфир.
   В устройствах с продольной многоканальной записью (Digital Audio Stationary Head) лента движется вдоль блока неподвижных головок, а общий цифровой поток «дробится» и записывается одновременно несколькими магнитными головками.
   Контактные  и структурные шумы при цифровой записи, в отличие от аналоговой, группируются, для дальнейшего исправления. Цифровой магнитофон автоматически  выполняет операции помехозащитного кодирования и перемещения символов с разнесением их по ленте (система коррекции ошибок), хотя при перезаписи материала более 10-20 раз качество ухудшается до неприемлемого уровня (при аналоговой записи количество перезаписей не может быть более трех-четырех).
   Помимо  ленты, в качестве звуконосителя может использоваться магнитный диск, основные достоинства которого - осуществление записи только на бездефектные участки, так как перед использованием диск форматируется и некачественные места поверхности становятся недоступными. Следовательно, структурные шумы исключаются. При этом остается возможность многократной магнитной записи и стирания информации, но главное - контроль звуковых преобразований на мониторе компьютера (воспроизведение с различной скоростью, нелинейный монтаж с сохранением «исходников», удаление шумов). При записи в студии может применяться технология непосредственной записи на жесткий диск компьютера. Между микрофоном и компьютером располагается компрессор — устройство, обеспечивающее усиление и компрессию (сжатие) спектра сигнала, Некомпрессированная запись в течение одной минуты может занять 10 Мб дискового пространства, но поскольку часть информации для слуха избыточна (за пределами порога слышимости), ее можно сжать в пять и более раз при помощи алгоритма сжатия MPEG, При этом следует учесть, что чрезмерное сжатие информации ухудшает качество звучания.
   Студийная запись производится в стандарте 24 бит, запись на CD — 16 бит («битность» обеспечивает динамический диапазон вещания). Информация при цифровом кодировании хранится в виде отдельных файлов в звуковом формате.
   В настоящее время применяются  все вышеперечисленные виды записи, так как редакции имеют в арсенале профессиональные аналоговые магнитофоны, уступающие в качестве, но имеющие преимущества в цене перед цифровыми звукозаписывающими устройствами.
   На  компакт-дисках (CD) аудиоданные располагаются  в виде бинарных логических единиц. Один слой диска представляет прозрачную подложку, второй — отражающий слой. Если на отражающем слое находится «дырка», считывающее устройство понимает ее как цифру «1», ее отсутствие— как «0». В перезаписываемых компакт-дисках (CD-RW) вместо металлизированного отражательного слоя находится специальное вещество, способное многократно изменять свою структуру. Под действием лазерного луча на поверхность слоя происходит его переход из кристаллического состояния в аморфное или наоборот.
   Несжатые (без компрессии) аудиоданные занимают достаточно много дискового пространства, поэтому для радиовещания применяют  компрессию (МРЗ). Так, на один CD помещается до 800 минут стереозаписи с качеством фонограммы, отвечающей высшей категории качества. Сжатые данные также могут храниться на жестком диске компьютера вместе с плейлистом — документом, определяющим порядок воспроизведения материалов в эфир. 
 
 

   Передвижные радиостанции
   В радиовещании широко используются трансляционные пункты — передвижные технические  средства, предназначенные для формирования передач. Стационарные трансляционные пункты, предназначенные для регулярных записей, размещаются в театрах, концертных залах, в государственных учреждениях и т.д. Вся необходимая аппаратура (пульт звукорежиссера, контрольные громкоговорящие устройства, магнитофоны или цифровые рекордеры, стойка коммутатора линий) находится в них постоянно и подключена к различным каналам связи. Режиссерский пульт имеет большое количество входных трактов, так как может использоваться большое количество микрофонов. В полустационарных пунктах аппаратура устанавливается только на время проведения передач.
   Передвижные радиостанции (ПРС) способны формировать, записывать и передавать сигнал звукового вещания. Как правило, ПРС размещают в специально оборудованных транспортных средствах. Автозвукопередвижки имеют все необходимое оборудование (отличающееся портативностью и малым временем развертывания) для творческого и технического регулирования аудиосигналов, качественной записи, а иногда и оборудование для передачи сигналов по линиям радиорелейной или спутниковой связи.
   В состав ПРС входит микшерный пульт  с большим количеством микрофонных входов, устройства для аналоговой или цифровой записи, аппаратура для монтажа, несколько комплектов наушников, микрофоны с длинными кабелями (или радиомикрофоны), устройства коммутации линий и генератор для возможности автономного электропитания. 

 

    Технические предпосылки  появления телевидения 

   Первое  пригодное для практического  использования устройство оптико-механической развертки луча предложил в 1884 г. немец Пауль Нипков (1860-1940). (Пауль  Нипков в 1884 г. получил патент на оптико-механич. устройство («электронный телескоп») для разложения изображения на элементы при передаче и приеме телевизионных сигналов, названное диском Нипкова.)
   Изобретатель  предложил использовать для развертки  телевизионного луча вращающийся непрозрачный диск большого диаметра с отверстиями, располагающимися по спирали Архимеда от внешнего края к центру. Размер изображения, а следовательно, и экрана определяла ограничительная рамка. Число отверстий на диске равно количеству строк на экране телевизора. При вращении каждое отверстие перемещалось по окружности, разбивая, таким образом, цельное изображение на отдельные строчки. Интересен факт, что Пауль Нипков, сделав свое величайшее изобретение будучи студентом, забыл про него и с удивлением увидел практическое воплощение собственной идеи спустя 40 лет на международной выставке радиоаппаратуры в Берлине в 1928 г. 

   1 этап Механическое телевидение
   Принцип оптико-механической развертки луча был настолько прост, что 2 октября 1925 г. англичанин Джон Лоджи Берд получил  изображение на экране приемника, а 26 января 1926 г. публично продемонстрировал «движущуюся картинку» членам Королевского института Великобритании. Разумеется, это не была современная «телевизионная картинка», на ней присутствовали лишь силуэты, но начало было положено. Спустя год Дж. Берд увеличивает количество отверстий на диске до 30-ти.
   Надо  отметить, что существенное увеличение разрешающей способности экрана было непреодолимо из-за конструктивных особенностей диска Нипкова: чем  больше отверстий на нем располагалось, тем меньше становился их размер и соответственно меньше света попадало на селеновый фотоэлемент. Рано или поздно должен был наступить предел, когда количество света стало бы недостаточным для его преобразования в электрический сигнал. Диск располагался в телевизионной камере, размеры которой были внушительными, экран принимающего телевизионного приемника был 3x4 см. Чтобы увеличить экран до размера средней фотографии (9x12 см), диск в телекамере должен был быть более двух метров в диаметре.
   В Советском Союзе экспериментами в области «электрического дальновидения» занимался Лев Сергеевич Термен (1896-1993) — виолончелист па основному образованию. Увлеченный радиотехникой молодой человек посещал лекции в Петроградском политехническом институте и в 1926 г. в своем дипломном проекте представил действующий образец телеустановки с механической разверткой на 64 строки. Дальновидение заинтересовало командование Красной Армии, и установка была продемонстрирована в 

   2 этап Электронное телевидение
   Следующий этап в развитии ТВ связан с именами  множества ученых, но, пожалуй, основные изобретения были сделаны нашими соотечественниками. 26 февраля 1888 г. русский ученый, профессор Московского университета Александр Григорьевич Столетов (1839-1896) продемонстрировал внешний фотоэффект— явление «вырывания» электронов с поверхности вещества под действием света. Прибор, созданный Столетовым, стал прообразом современных фотоэлементов.
   Профессор Петербургского технологического института  Борис Львович Розинг (1869-1933) работал  над электронной системой телевидения, действующей по сей день. К этому времени уже существовала электронно-лучевая трубка. 25 июня 1907 г. Б. Л. Розинг получил в России привилегию на «способ электрической передачи изображений на расстояние»2. Позднее ученый напишет: «Катодный пучок есть именно то идеальное перо, которому самой природой уготовано место в аппарате получения изображения в электрическом телескопе. Оно обладает тем ценнейшим свойством, что его можно непосредственно двигать с какой угодно скоростью при помощи электрического или магнитного поля, могущего быть притом возбужденным со скоростью света с другой станции, находящейся на каком угодно расстоянии».
   Заметим, что в это время шли активные разработки систем механического ТВ, но Борису Львовичу уже был понятен  тупик выбранного пути. Реализацию «электронной телескопии» он видел в применении безынерционных приборов, где необходимо было заставить двигаться пучок электронов. Было бы преувеличением сказать, что система ТВ Б. Л. Розинга была полностью электронной: в передающей камере для развертки изображения он применял оптико-механическую систему вращающихся зеркал (усовершенствованный диск Нипкова). Электрические сигналы поступали на электронно-лучевую трубку Брауна. Яркость свечения экрана зависит от количества электронов, попадающих на единицу площади. Чтобы заставить электронный луч отклоняться («бегать») по экрану, на него воздействали магнитным или электрическим полем. 
 
 

   9 мая 1911 года Борис Львович получил  на мониторе свою знаменитую  «решетку» — белые полосы на черном фоне. Значимость работ была оценена во всей мире, но, к сожалению, работу не удалось завершить: в 1931 г. Розинга арестовали «за финансовую помощь контрреволюционерам «, а спустя два года он скончался в архангельской ссылке.
   Завершить работу по созданию электронного ТВ удалось Владимиру Козьмичу Зворыкину (1889-1982) — ученику Бориса Львовича, работавшему в студенческие годы у него ассистентом. В 1912 г. Зворыкин окончил Петербургский технологический институт, затем повышал уровень своих знаний в Париже, а вернувшись в Россию, был призван в армию. Во время Первой мировой воины Владимир Козьмич отвечал за радиосвязь, проявив себя талантливым офицером. Потом революция 1917 г. и вынужденная эмиграция в США — вынужденная, потому что Зворыкин узнал, что ордер на его арест уже выписан.
   В 1929 г. Зворыкина пригласил на работу президент RCA («Радио корпорейшн оф Америка») Дэвид Сарнов (1891-1971), тоже выходец из России. Будучи дальновидным человеком, Сарнов решил финансировать разработки в области телевидения, подсчитав вместе со Зворыкиным необходимые инвестиции в 100 тыс. долларов. Тогда они еще не предполагали, что результат обойдется дороже в 500 раз.
   В 1931 г. В. К. Зворыкин создает передающую телевизионную трубку — иконоскоп, с большим количеством фотоэлементов. В трубке использовался метод  накопления зарядов. Фотоэлементы складывались в мозаичную систему, электронный луч чертил по мозаике горизонтальные строчки, по отдельности разряжая участок за участком, в результате чего образовывались электрические импульсы, соответствующие освещенности объекта съемки. Главная проблема в создании электронного телевидения была решена.  
 
 

   С этого момента изменяется путь развития ТВ — оно превращается в электронное средство массовой информации. Достаточно продуктивно над электронной телевизионной камерой работал Фило Франсуорт (США), который пытался найти поддержку в киноиндустрии (студия «Парамаунт») и у газетного магната Херста, но получил отказ: кино и пресса рассматривали ТВ как конкурента. Тем не менее его передающая трубка «диссектор» была простой и надежной и даже применялась в качестве экспериментального ТВ в США и Англии, но, лишившись инвестиций, без усовершенствования не могла конкурировать с разработками конкурентов.
   В 1933 и 1934 гг. по приглашению советского правительства В. К. Зворыкин посещает СССР с докладами о своих изобретениях. Советские ученые угадывают секрет получения мозаичной мишени и уже через год демонстрируют ему действующую ТВ-установку.
   Параллельно и независимо от американских разработок в СССР над иконоскопом работал  Семен Исидорович Катаев (р. 1904). Проект передающей телевизионной трубки он разработал до Зворыкина, но первым получить практический результат не смог.
   В Англии, стране первой телевизионной  трансляции, разрешение ТВ достигло 240 строк. После американского революционно-технологического рывка англичане тоже стали склоняться к электронному ТВ: в 1936 г. компания «Эми-Маркони» продемонстрировала систему с разложением на 405 строк. Это вполне закономерно, так как один из руководителей компании, Айзек Шенбер, ранее был студентом Б. Л. Розинга в Петербурге. Механическое ТВ транслировалось в Великобритании регулярно с 1929 г., но со 2 ноября 1936 г. передачи регулярно выходили с электронной разверткой луча.
   Цветное телевидение.
   Международные телевизионные стандарты
   Как ни странно, работы в области цветного телевидения начались параллельно с черно-белым «дальновидением». Первую цветную трехкомпонентную систему ТВ («Телефот») предложил в 1900 г. Александр Аполлонович Полумордвинов (1874-1942). Развертка луча производилась посредством диска Нипкова с цветными светофильтрами. В 1902 г. Полумордвинов подает заявку на новое устройство — «аппарат для передачи изображения и способ этой передачи в связи с одновременной передачей звука». К сожалению, аппаратура не была закончена, хотя, по мнению специалистов, проект, основанный на методах последовательного смешения цветов, был вполне работоспособен.
   В 1907 г. патент на проект двухцветного телевидения  с одновременной цветовой передачей  в Германии разработал выходец из России Ованес Абгарович Адамян (1879-1932). Позднее он переезжает в Россию и в 1925 г. патентует трехкомпонентную последовательную передачу цветов (RGB). В развертывающем устройстве было три серии отверстий, каждое из которых закрывалось красным, синим и зеленым светофильтрами. Реализовать эту идею в 1928 г. было суждено знаменитому Дж. Берду. Основная проблема данной схемы заключалась в ее несовместимости с чернобелыми ТВ-приемниками, кроме того, эпоха механического телевидения приближалась к концу. В США аналогичными разработками занимался Питер Голдмарк (компания CBS), но Федеральная комиссия связи в 1943 г. утвердила монохромный стандарт. В сущности, внедрение цвета на телевизионном экране было похоже на проникновение цвета в фотографию: технологически это было уже возможно, но читателям или зрителям вполне хватало черно-белой информации на оттиске или экране.
   Во  время войны работы по внедрению  цветного ТВ почти во всех странах, за исключением Великобритании, были прекращены.
   В СССР исследования по цветному электронному ТВ возобновились в 1947 г., а 7 ноября 1952 г. в Ленинграде была успешно проведена экспериментальная передача. Перед странами встала дилемма: вписываться в существующий стандарт черно-белого телевидения, что с технической точки зрения было невероятно сложно, или разрабатывать совершенно новый стандарт, в этом случае обладатели черно-белых приемников не смогли бы в принципе видеть передачи цветного формата. Поэтому, несмотря на технические сложности, мир выбрал в ущерб качеству совместимость систем. 
 

   Основные  характеристики цвета — это яркость (больше-меньше света), цветовой тон (длина электромагнитных волн вызывает цветовое ощущение) и насыщенность (степень разбавления одного из основных цветов белым цветом). Когда зритель смотрит на экран ТВ, он видит цвета в проходящем свете, поэтому почти любой цвет1 можно получить смешением трех основных цветов: красного, синего и зеленого.
   Телевизионная строка формируется движением электронного луча слева направо. Одновременно видимые  строки (вследствие инерционности зрения) называются телевизионным растром. Совокупность строк видимого изображения называется телевизионным кадром.
   Наше  зрение острее реагирует на изменение  яркости, чем на изменение цвета, поэтому, как правило, яркостных  сигналов передается больше, чем цветных.
   Черно-белое изображение можно полностью передать яркостным сигналом (от черного до белого), оттенки RGB-цветов можно передать цветоразностными сигналами.
   Существующие  в данное время телевизионные  стандарты несовместимы друг с другом, правда, современные телевизоры способны автоматически перестраиваться с одного стандарта на другой, европейские и американский стандарты изначально были зависимы от частоты переменного тока: в Европе и России эта величина, составляет 50 Гц, в Америке, Канаде, Японии — 60 Гц. Поэтому количество полей в Европе — 50 и 25 кадров в секунду, а в Северной Америке — 60 и 30 кадров в секунду. 

   NTSC
   Телевизионный стандарт устанавливает основные параметры  систем ТВ-вещания, такие, как телевизионная  развертка (способ и число строк  разложения, формат и частота кадров и т. д.); параметры радиосигналов для передающей телевизионной станции; ширина полосы частот радиоканала; характеристики телевизора; состав и параметры сигнала яркости и цветоразностных сигналов, способ модуляции и т.д.
   Разработка  собственного государственного стандарта требовала гигантских материальных ресурсов. США менее других стран были обескровлены Второй мировой войной, да и у населения было достаточно средств для приобретения новых телеприемников. Национальным комитетом телевизионных систем (NTSC) в 1953 г. был утвержден совместимый стандарт, и в США началось регулярное вещание в системе NTSC. Первые телевизоры, отвечающие данному стандарту, были настолько сложны, что им требовалась еженедельная настройка специалистом. Американцы не хотели покупать дорогие и капризные телеприемники, компании продавали их ниже себестоимости, тем не менее массовым цветное ТВ в США стало только в середине 60-х гг. К моменту внедрения цветного стандарта у населения было 28 млн. черно-белых телеприемников.
   В формировании изображения участвуют  один сигнал яркости и два цветности. Сигнал цветности присутствует в  каждой строке. Использование квадратурной модуляции дозволяет одновременно передавать два цветоразностных  сигнала. Системе присуща высокая  помехоустойчивость и хорошая цветопередача благодаря эффективному разделению сигналов яркости и цветности. Полный кадр формируется двумя полукадрами (полями), в системе принята чересстрочная развертка. Недостатком системы, который может заметить зритель, являются цветоискажения на ярких и темных участках одинаково окрашенного объекта. Как известно, человеческий глаз особенно остро видит искажения белого цвета и оттенков кожи лица. Например, если одна часть лица будет освещена очень ярко, а другая будет в тени, зритель увидит зеленый оттенок в светлых и красный в недостаточно освещенных участках лица.
   Основные  технические характеристики NTSC:
   — Разрешение — 525 строк.
   — Количество кадров в секунду — 30.
   — Количество полей — 60 (точнее, 59.94).
   — Развертка луча чересстрочная (интерлейсинг).
   Стандарт NTSC принят в 18 странах: США, Канаде, Японии, странах Латинской Америки, Филиппинах, Южной Корее. 

   SECAM
   SECAM (Sequential Couleur avec Memoire, Sequential Color Memory) —  система последовательной передачи  цветов с памятью.
   Перед советскими специалистами была поставлена трудная задача разработки собственного ТВ-стандарта. Московский телецентр  с 1948 г. вел вещание с разложением  в 625 строк, разработанным С. И. Катаевым и С. В. Новаковским.
   В 1954 г. нашими специалистами был разработан вариант системы NTSC (ОСКМ), а в 1956 г. через Ленинградский телецентр был продемонстрирован кинофильм в цветном изображении, с целью проверки качества приема сигнала на существующие черно-белые телевизоры «КВН-49», «Ленинград Т-2», «Луч», «Экран», «Зенит» и «Темп-1». Качество оказалось вполне приемлемым. Но все же стандарт NTSC Советский Союз не мог принять из-за разгоравшейся «холодной войны» и, как тогда казалось, неоправданной дороговизны.
   Оригинальный  телевизионный стандарт был предложен французским инженером Анри де Франсом (Henri de France) в 1961 году. Отношения с Францией у Советского Союза были теплыми, и лично де Голль был заинтересован в продвижении французского стандарта. Руководству Советского Союза была нужна независимость от Америки, поэтому было принято политическое решение, без учета технологических недостатков или преимуществ. С 1965 г. над системой совместно начали трудиться французские и советские специалисты. Оказалось, что стандарт, продемонстрированный в ограниченном студийном масштабе, на практике был неэффективен. В течение двух лет его удалось существенно доработать.
   С 1 октября 1967 г. в СССР начались регулярные передачи цветного телевидения в  стандарте SECAM. Со временем систему  приняли 25 стран, включая страны Восточной Европы (бывший социалистический лагерь, кроме Югославии) франкоговорящие страны Африки и Азии, часть Греции и Иран.
   К достоинствам SECAM следует отнести  большую помехоустойчивость системы  у что было особенно актуально  при передаче видеосигнала на огромных просторах Советского Союза. Сигналы цветности передавались в разные строки, поэтому перекрестные искажения между ними были исключены. В телевизоре информация о каждой строке запоминалась до прихода следующей строки. Телевизионный приемник в данной системе более сложен, следовательно, дороже в изготовлении, чем приемник системы NTSC. Цветная информация, записанная в SECAM, может потерять цвет в системе PAL. Однако запись PAL не теряет цвет в системе SECAM.
   Следует сказать и о недостатках: качество цветопередачи было ниже, чем в системе NTSC, так как использовался принцип последовательной передачи цветов (технология, предложенная еще А. Полумордвиновым и О. Адамяном), особенно это было заметно на мелких деталях изображения.
   С 1977 г. все вещание в СССР велось в цветном формате.
   Технические характеристики SECAM:
   — Разрешение — 625 строк. Количество кадров в секунду — 25.
   — Количество полей — 50.
   — Развертка луча чересстрочная (интерлейсинг). 

   PAL
   PAL (Phase Alternation Line) — чередование фазы по строкам. Стандарт, предложенный немецким ученым фирмы «Телефункен» доктором Вальтером Брухом, представлял собой усовершенствованную систему NTSC с некоторыми элементами SECAM. Начало разработки нового стандарта относится к 1961 г., введение в действие — 1967 г. Вальтер Брух устранил недостатки, свойственные NTSC, в результате чего улучшилась цветопередача. Сигналы цветности, как и в NTSC, передавались одновременно, но, как в SECAM, применялись цветоразностные сигналы.
   К достоинствам системы следует отнести  меньшую полосу частот, чем в стандарте SECAM, воспроизведение оптимальных цветов в светах и тенях телевизионного изображения, хорошую помехоустойчивость к фазовым искажениям сигнала цветности, стабильность информации о цветовых оттенках, прекрасную совместимость с черно-белыми телевизорами.
   Стоимость телеприемника была ниже, чем для  стандарта SECAM, но выше, чем для NTSC.
   Технические характеристики системы PAL:
   — Разрешение — 625 строк.
   — Количество кадров в секунду — 25.
   — Количество полей — 50.
   — Развертка луча чересстрочная (интерлейсинг).
   Система оказалась настолько успешной, что  стала применяться в большинстве  европейских стран, Австралии, Китае, Индии (в 62 странах). 

   Внедрение цветного телевидения повсеместно  проходило чрезвычайно тяжело. Главная  причина заключалась в том, что население не спешило покупать цветные телевизоры. Как писал один из отцов советского телевидения Павел Васильевич Шмаков, «черно-белое телевидение удовлетворяет нас по тем же причинам, как и простая фотография или кинокартина. Но этим мы обязаны только длительному насилию над своей психикой, заставляя себя ограничиваться изображениями без наличия цветов, чем так богата окружающая нас природа».
   Американцы, первыми разработав стандарт NTSC в 1953 г., не подозревали, что потребуется  полтора десятка лет для того, чтобы цветное телевидение стало массовым» Телекомпаниям было невыгодно производить вещание в цвете, зная, что население смотрит в черно-белые экраны. В свою очередь телезрители не спешили выкладывать средства, понимая, что количество цветных передач недостаточно. Почти все расходы легли на компанию RCA. Первые цветные телевизоры стоили около 500 долларов, а черно-белые в пять раз дешевле. RCA пообещала со временем выплачивать компенсацию тем, кто приобретет цветной телеприемник, и сдержала обещание. К середине 60-х гг. количество цветных приемников подошло к цифре в 10 млн. штук. Только после этого к цветному вещанию приступили телекомпании ABS и CBS.
   В Советском Союзе еще до принятия стандарта SECAM с 1953 г. осуществлялись опытные  цветные передачи посредством оптико-механической развертки луча: в передающей камере и телевизионном приемнике синхронно вращались диски с цветными светофильтрами. Промышленность начала выпуск цветных телевизоров «Радуга» с экраном в диаметре 18 см.
   Первыми цветными телевизорами с электронной разверткой стали новая «Радуга» и «Темп-22», хотя их выпустили немного. Перейдя на SECAM, СССР оказался без собственного телевизора, поэтому в первое время в страну завозили французские телеприемники KFT. Вскоре наши специалисты изготовили оборудование для аппаратно-студийных и аппаратно-программных блоков. Далее картина напоминала американскую: население не желало покупать дорогие цветные телевизоры, хотя государство продавало их ниже себестоимости, объем цветного вещания был недостаточен. И только к 1987 г. почти все местные телецентры в конце концов получили комплекты для цветного телевещания.
   Введение  в действие различных телевизионных  стандартов поделило «сферы влияния» в телевизионном мире. Советско-французский стандарт оказался самым неудачным с технической точки зрения, но зато успешно выполнял роль «берлинской стены». К 1985 г. все европейские телеприемники стали выпускаться с совместимым стандартом PAL/SECAM, а позднее телевизоры «научились» самонастраиваться на любую телевизионную систему. При этом к концу XX века стало очевидным, что существующие стандарты безнадежно устарели. Ученые всех развитых стран включились в разработку телевидения высокой четкости. 

   Обобщенная  структурная схема  телевизионной системы
   Телевидение базируется на том, что объект съемки можно разложить на большое количество отдельных точек, каждая из которых будет иметь определенную яркость и цветность. Для того чтобы зритель увидел на экране движущуюся «картинку», необходимо произвести:
   1) преобразование света в электрические сигналы,
   2) передачу электрических сигналов  по каналу связи,
   3) преобразование электрических сигналов  в оптическое изображение. 
 
 

   Рассмотрим  это на примере телевизионной  передачи. В комплекс телевизионного производства входят аппаратно-студийные блоки, внестудийные технические средства, средства записи, монтажа и озвучивания видеозаписей. Видеосюжеты с места события могут транслироваться как в прямом эфире, так и в записи.
   Оператор  направляет телекамеру на телеведущего, и отраженный свет, пройдя через систему линз (объектив), преобразуется в оптическое изображение, при этом трехмерные объекты становятся двухмерными. Попав на передающую телевизионную трубку, оптическое изображение преобразуется в электрические сигналы. Развертывающее устройство раскладывает сигналы на отдельные импульсы, каждый из которых пропорционален отдельному участку оптического изображения. Таким образом формируется сигнал яркости.
   Каждая  яркостная точка ТВ-сигнала в  передающей телевизионной трубке должна строго соответствовать по своему геометрическому положению светящейся точке на экране телевизора, поэтому электрические сигналы обрабатываются в генераторе синхронизирующих импульсов. Количество строк, на которое разбито изображение, на передающей и приемной стороне одинаково, и длительность импульсов становится синхронной. Сигнал усиливается и поступает в передатчик, где приводится (модулируется) к удобному для передачи виду.
   В качестве канала связи могут выступать  радиорелейные линии (наземное эфирное  телевидение), ретрансляторы на искусственных спутниках Земли (спутниковое телевидение), кабельные линии связи (кабельное телевидение) или интернет (интернет-ТВ). При помощи канала связи сигнал от передатчика достигает приемного устройства.
   В телевизионном приемнике электрический сигнал усиливается и при помощи электронно-оптического устройства преобразуется в оптическое изображение. Каждый элемент данного изображения воспроизводится в виде изменения яркости и цветности. 
 

   Подготовка  телевизионной передачи
   Основные этапы:
   1) идея программы, 2) сбор материала, 3) подготовка сценария, 4) техническая  проработка, 5) репетиции, 6) сценарий  видеоряда, 7) съемка эпизодов, 8) монтаж, 9) просмотр, 10) формирование из телепередач  программы, 11) выпуск передачи в  эфир, 12) хранение (архивирование) видеофонограммы.
   Техническая часть методов сбора материала  аналогична данному этапу в радиовещании, а создание сценария, репетиции и  т.д. выходит за рамки курса «Техника и технология СМИ». 
 

   Видеозапись
   Несколько десятилетий после своего рождения телевидение существовало исключительно в прямом эфире, так как технически записать видеосигнал не удавалось. Правда, в порядке экспериментов телевизионщики специальной синхронной камерой снимали изображение с экрана особо яркого кинескопа. Другого пути не было.
   Магнитная звукозапись начала распространяться в конце 30-х гг. прошлого столетия. Казалось бы, какая разница между  звуковым и видеорядом, если и тот  и другой представлен электрическими сигналами? Почему научились записывать звук и не могли писать изображение? Дело в том, что видеосигнал занимает на магнитной ленте в сотни раз больше места, чем аудиосигнал. Следовательно, на обычную бобину с лентой возможно будет записать лишь несколько секунд видеозаписи, при этом скорость ее движения относительно магнитной головки необходимо будет повысить тоже в несколько сотен раз.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.