На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Математическая модель линейной непрерывной многосвязной системы. Уравнение движения и общее решение неоднородной системы линейных дифференциальных уравнений. Сигнальный граф системы и структурная схема. Динамики САУ и определение ее характеристик.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 26.01.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


КЛАССИЧЕСКИЙ МЕТОД

МАТЕМАТИЧЕСКОГО ОПИСАНИЯ И ИССЛЕДОВАНИЯ МНОГОСВЯЗНЫХ СИСТЕМ


1.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Математическая модель линейной непрерывной многосвязной системы в физических переменных "вход-выход" при детерминированных воздействиях может быть представлена векторным дифференциальным уравнением в символическом виде [*]:
, (1.1.1)
где - вектор размерности n выходных координат системы; - вектор размерности m управляющих воздействий; - вектор размерности m1 возмущающих воздействий; , , - полиномные матрицы размерностей , , соответственно, элементы которых являются полиномами от р с постоянными коэффициентами (например , - линейная комбинация относительно выходной координаты yj и ее производных); - символическое обозначение производной; t - время. При этом предполагается существование соответствующих производных от y(t), u(t), r(t) по t и kL>kG, kL>kN, где через kL, kG, kN обозначены порядки старших производных полиномов от р в соответствующих матрицах L(p), G(p) и N(p).
Уравнение движения САУ составляется на основе ее структуры и математического описания, входящих в систему элементов, и имеет вид уравнения (1.1.1), где u(t)=z(t) и z(t) - вектор задающих воздействий на систему.
Уравнение движения САУ (1.1.1), записанное относительно у(t), называется уравнением автоматического управления (УАУ)
, (1.1.2)
где , - матричные передаточные функции по задающему z(t) и возмущающему r(t) каналам соответственно.
Для определения собственных движений системы (1.1.1), то есть когда u(t)=0 (или z(t)=0) и r(t)=0, и ее порядка необходимо записать характеристический определитель
, (1.1.3)
и найти корни ?j характеристического уравнения
. (1.1.4)
Система будет устойчивой, если вещественная часть всех корней характеристического уравнения (нули функции ) будет неположительной.
Общее решение неоднородной системы линейных дифференциальных уравнений может быть представлено в виде суммы общего решения yo(t) однородной системы и частного решения уч(t) исходной неоднородной системы
, (i=1,…,n), (1.1.5)
где: Cij - коэффициенты, определяемые начальными условиями дифференциальных уравнений; q - степень характеристического уравнения.
1.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 1.1.1
Построить сигнальный граф математической модели динамического режима САУ, записанной в переменных "вход-выход" в символической форме векторно-дифференциальным уравнением вида:
, , (1.2.1)
и определить характер свободного движения процесса по каналу “возмущающее воздействие r2 - выходная переменная y1“.
Решение
Сигнальный граф рассматриваемой САУ, в соответствии с уравнением (1.2.1) представлен на рис. 1.1.
Независимость выходных переменных yi в САУ определяется ее физическими свойствами и математически выражается в виде диагональности матрицы процесса L(p). На рис.1.1 независимость выходных переменных между собой отображается не связанностью вершин у1 и у2 сигнального графа, то есть независимостью уравнений между собой. Это позволяет решать уравнения независимо (отдельно) друг от друга.
y1
z1 r1
z2 r2
y2
Рис. 1.1. Сигнальный граф системы уравнений (1.2.1)
Для определения переходного процесса по каналу “возмущающее воздействие r2 - выходная переменная y1“ запишем его уравнение динамики
, (1.2.2)
которое представляет собой неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решение данного уравнения дается формулой (1.1.5) при j=2.
Для определения корней ?1,2 запишем характеристическое уравнение соответствующего однородного дифференциального уравнения
, (1.2.3)
и решая его, получим , . т. е. переходный процесс по рассматриваемому каналу является колебательным асимптотически сходящимся.
Задача 1.1.2
Математические модели динамических режимов управляемой и управля и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.