На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 03.01.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


1
Комплексные числа, их прошлое и настоящее.


Содержание.

I. Введение.
II. Об истории возникновения комплексных чисел и их роли в процессе развития математики.
III. Алгебраические действия над комплексными числами и их геометрический смысл.
1. Основные понятия и арифметические действия над комплексными числами.
2. Геометрическое изображение комплексных чисел. Тригонометрическая и показательная формы.
3. Операция сопряжения и ее свойства.
4. Извлечение корней.
5. Геометрический смысл алгебраических операций.
IV. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
1. Формула Кердано.
2. Метод Феррари для уравнения 4-ой степени.
V. Дополнительные задачи и упражнения, связанные с использованием комплексных чисел.
VI. Заключение.
VII. Литература.

I. Введение.

Алгебраические уравнения с одним неизвестным и связанные с ними вопросы в нахождении решений относятся к числу наиболее важных в школьной программе. В общем виде в средней школе изучаются лишь уравнения 1-ой степени (линейные) и уравнения 2-ой степени (квадратные), поскольку для таких уравнений существуют простые формулы, выражающие корни уравнения через его коэффициенты с помощью арифметических операций и извлечения корней.
Именно, если дано:
(?) Линейное уравнение ax+b=0, где а?0, то x=-b/a - единственный корень;
(?) Квадратное уравнение ax+bx+c=0, где a,b,c - действительные числа, a?0, то x=-b±vbb-4ac/2a; при этом число корней зависит от величины D = b2 - 4ac, называемой дискриминантом квадратного уравнения, а именно:
При D>0 - два действительных корня, D=0 - один двукратный корень (или, что то же, два совпадающих корня), D<0 - нет действительных корней.
Из уравнений более высоких степеней в школьном курсе алгебры рассматриваются лишь некоторые частные их типы - трехчленные (например, биквадратные), симметрические, … Однако никаких методов для решения произвольных уравнений 3-ей и 4-ой степени (хотя соответствующие формулы известны), в школьной алгебре не дается, т.к. эти методы существенно опираются на теорию комплексных чисел.
Цель данного реферата состоит в том, чтобы ознакомить учащихся средних школ с важнейшим и новым для них математическим понятием - понятием комплексного числа, а также показать, насколько эффективно его применение при решении некоторых задач, в том числе и в первую очередь, при решении кубичных уравнений.
II. Об истории возникновения комплексных чисел и их роли в процессе развития математики.

Комплексные числа возникли в математике в начале XVI века в связи с решением алгебраических уравнений 3-ей степени, а позднее, и уравнений 2-ой степени. Некоторые итальянские математики того времени (- Сципион дель Ферро, Николо Тарталья, Джироломо Кардано, Рафаэль Бомбелли) ввели в рассмотрение символ v-1 как формальное решение уравнения х2+1=0, а также выражение более общего вида (а+b•v-1) для записи решения уравнения (х-а)2+b2=0. Впоследствии выражения вида (а+b•v-1) стали называть «мнимыми», а затем «комплексными» числами и записывать их в виде (а+bi) (символ i для обозначения v-1 ввел Леонард Эйлер в XVIII в.). Этих чисел, чисел новой природы оказалось достаточно для решения любого квадратного уравнения (включая случай D < 0), а также уравнения 3-ей и 4-ой степени.
МатематикиXVI в. и следующих поколений вплоть до начала XIXвека относились к комплексным числам с явным недоверием и предубеждением. Они считали эти числа «мнимыми» (Декарт), «несуществующими», «вымышленными», «возникшими от избыточного мудрствования» (Кардано)… Лейбниц называл эти числа «изящным и чудесным убежищем божественного духа», а v-1 считал символом потустороннего мира (и даже завещал начертать его на своей могиле).
Однако использование аппарата комплексных чисел (несмотря на подозрительное к ним отношение), позволило решить многие трудные задачи. Поэтому со временем комплексные числа занимали все более важное положение в математике и ее приложениях. В первую очередь они глубоко проникали в теорию алгебраических уравнений, существенно упростив их изучение. Например, один из трудных вопросов для математиков XVII-XVIII веков состоял в определении числа корней алгебраического уравнения n-ой степени, т.е. уравнения вида a0•xn+a1•xn-1+…+an-1•x+an=0. Ответ на этот вопрос, как оказалось, зависит от того, среди каких чисел - действительных или комплексных - следует искать корни этого уравнения. Если ограничиться действительными корнями, то можно лишь утверждать, что их не больше, чем n. А если считать допустимым наличие и комплексных решений, то ответ на поставленный вопрос получается исчерпывающий: любое алгебраическое уравнение степени n (n?1) имеет ровно n корней (действительных или комплексных), если каждый корень считать столько раз, какова его кратность (а это - число совпадающих с ним корней). При n?5 общее алгебраическое уравнение степени n неразрешимо в радикалах, т.е. не существует формулы, выражающей его корни через коэффициенты с помощью арифметических операций и извлечения корней натуральной степени.
После того как в XIX в появилось наглядное геометрическое изображение комплексных чисел с помощью точек плоскости и векторов на плоскости (Гаусс в 1831 г, Вессель в 1799 г, Арган в 1806 г), стало возможным сводить к комплексным числам и уравнениям для них многие задачи естествознания, особенно гидро- и аэродинамики, электротехники, теории упругости и прочности, а также геодезии и картографии. С этого времени существование «мнимых», или комплексных чисел стало общепризнанным фактом и они получили такое же реальное содержание, как и числа действительные. К настоящему времени изучение комплексных чисел развилось в важнейший раздел современной математики - теорию функций комплексного переменного (ТФКП).
III/ Алгебраические действия над комплексными числами и их геометрический смысл.

1. Основные понятия и арифметические действия над комплексными числами.
Логически строгую теорию комплексных чисел построил в XIX в (1835 г) ирландский математик Вильям Роумен Гамильтон. По Гамильтону комплексные числа - это упорядоченные пары z=(x,y) действительных чисел, для которых следующим образом определены операции сложения и умножения:
(x1,y1)+(x2,y2)=(x1+x2, y1+y2); (1)
(x1,y1)•(x2,y2)=(x1•x2 - yiy2, xiy2 + x2y1). (2)
Действительные числа x и y называются при этом действительной и мнимой частями комплексного числа z=(x,y) и обозначаются символами Rez и Imz соответственно (real - действительный, imanginerum - мнимый).
Два комплексных числа z1=(x1,y1) и z2=(x2,y2) называются равными только в том случае, когда x1=x2 и y1=y2. Из определения следует, что всякое комплексное число (x,y) может быть представлено в следующем виде: (x,y)=(x,0)+(0,1)(y,0). (3)
Числа вида (х,0) отождествляются с действительными числами х, т.е. (х,0)=х, число (0,1), называемое мнимой единицей, обозначается символом i, т.е. (0,1)=i, причем i2=-1, равенство (3) принимает вид z=x+iy и называется алгебраической формой записи комплексного числа z=(x,y).
Операции сложения и умножения комплексных чисел имеют следующие свойства:
а) z1+z2=z2+z1 (переместительный закон или коммутативность сложения и умножения)
б) z1z2=z2z1
в) z1+(z2+z3)=(z1+z2)+z3 (сочетательный закон или ассоциативность)
г) z1(z2z3)=(z1z2)z3
д) (z1+z2)z3=z1z3+z2z3 (распределительный закон или дистрибутивность)
Вычитание и деление комплексных чисел z1=x1+iy1 и z2=x2+iy2 определяют, причем однозначно, их разность z1-z2 и частное z1/z2 как решения соответствующих уравнений z+z2=z1 и zz2=z1 (при z2?0). Отсюда следует, что разность и частное от деления z1 на z2 вычисляются по формулам:
z1-z2=(x1-x2)+i(y1-y2), (4)
z1/z2=(x1x2+y1y2)/(x22+y22) + i((y1x2-x1y2)/(x22+y22)) (5)
Данное определение можно выразить в других терминах, а именно, вычитание - как действие, обратное сложению: z=z1+(-z2), где число (-z2) называется противоположным z2; деление - как действие, обратное умножению: z=z1(z2-1), где z2-1 - число, обратное для z2 (z2?0). Таким образом, анализ определений и свойств арифметических операций над комплексными числами приводит к следующим выводам:
- множество комплексных чисел (С) является расширением множества R действительных чисел, т.е. действительные числа содержатся как частный случай, среди комплексных (точно так же как, например, целые числа содержатся среди действительных);
- комплексные числа можно складывать, вычитать, умножать и делить по правилам, которым подчиняются действительные числа, заменяя в итоге (или в процессе вычислений) i2=-1.
2. Геометрическое изображение комплексных чисел. Тригонометрическая и показательная формы.
Замечание. Понятия «больше» или «меньше» для комплексных чисел лишено смысла (не принято никакого соглашения).
Если на плоскости введена декартова система координат 0xy, то всякому комплексному числу z=x+iy может быть поставлена в соответствие некоторая точка М(х,у) с абсциссой «х» и ординатой «у», а также радиус - вектор 0М. При этом говорят, что точка М(х,у) (или радиус - вектор 0М) изображает комплексное число z=x+iy.
Плоскость, на которой изображаются комплексные числа называется комплексной плоскостью, ось 0у - мнимой осью.
Число r=vx2+y2-, равное длине вектора, изображающего комплексное число, т.е. расстоянию от начала координат до изображающей это число точки, называется модулем комплексного числа z=x+iy и обозначается символом |z|.
Угол ?=(0М,?0х) между положительным направлением оси 0х и вектором 0М, изображающим комплексное число z=x+iy ?0, называется его аргументом.
Из определения видно, что каждое комплексное число (?0), имеет бесконечное множество аргументов. Все они отличаются друг от друга на целые кратные 2? и обозначаются единым символом Argz (для числа z=0 аргумент не определяется, не имеет смысла).
Каждое значение аргумента совпадает с величиной ? некоторого угла, на который следует повернуть действительную ось (ось 0ч) до совпадения ее направления с направлением радиус-вектора точки М, изображающей число z (при этом ? > 0, если поворот совершается против часовой стрелки и ? <0 в противном случае). Таким образом, аргумент комплексного числа z=x+iy ?0 есть всякое решение ? системы уравнений cos?=x/vx2+y2; sin?=y/vx2+y2.
Значение Argz при условии 0?Argz<2? называется главным значением аргумента и обозначается символом argz. В некоторых случаях главным значением аргумента считают наименьшее по абсолютной величине его значения, т.е. значение, выделяемое неравенством -?<???.
Между алгебраическими х, у и геометрическими r, ? характеристиками комплексного числа существует связь, выражаемая формулами x=rcos?, y=rsin?, следовательно, z=x+iy=r(cos?+isin?). Последнее выражение, т.е. z= r(cos?+isin?) (6) называется тригонометрической формой комплексного числа. Любое число z?0 может быть представлено в тригонометрической форме.
Для практики число вида (cos?+isin?) удобнее записывать короче, с помощью символа ei?=cos?+isin? (7). Доказанное для любых чисел ? (действительных или комплексных) это равенство называется формулой Эйлера. С ее помощью всякое комплексное число может быть записано в показательной форме z=rei? (8)
3. Операция сопряжения и ее свойства.
Для данного комплексного числа z=x+iy число x-iy (отличающееся от z лишь знаком при мнимой части) называется сопряженным и обозначается символом z. Переход от числа z к числу z называется сопряжением, а сами эти числа сопряженными (друг к другу), т.к. (z)=z. Из определения следует, что только действительное число сопряжено самому себе. Геометрически сопряженные числа изображаются точками, симметричными относительно действительной оси (рис.2).
Отсюда следует, что |z|=|z|, argz=-argz. Кроме того,
z+z=2x=2Rez;
z-z=2iy=2iImz;
zz=x2+y2=|z|2,
а также: z1+z2=z1+z2; z1z2=z1z2; (z1/z2)=z1/z2; P(z)=P(z), где Р (z) - любой многочлен с действительными коэффициентами; (P(z)/Q(z))=(P(z)/Q(z)), где P и Q - многочлены с действительными коэффициентами.
4. Извлечение корней.
Извлечение корня из комплексного числа есть действие, обратное возведению в степень. С его помощью по данной степени (подкоренное число) и данному показателю степени (показатель корня) находят основание (корень). Иначе говоря, это действие равносильно решению уравнения zn=a для нахождения z. В множестве комплексных чисел действие извлечения корня всегда выполнимо, хотя причем и неоднозначно: в результате получается столько значений, каков показатель корня. В частности, квадратный корень имеет ровно два значения, которые можно найти по формуле:
va=v?+i?=±((v|a|+?)/2 ± i(v|a|-?)/2)), где знак «+» в скобках берется при ?>0, «-» - при ?<0.
5. Геометрический смысл алгебраических операций.
Пусть даны два комплексных числа z1 и z2. В результате сложения этих чисел получается число z3, изображаемое вектором 0С диагонали параллелограмма 0АСВ (по правилу параллелограмма сложения векторов): z1+z2=0A+0B=0C=z3.
Рис.3
Разность (z1-z2) данных чисел, соответствующая их вычитанию, можно рассматривать как сумму вектора 0А, изображающего число z1 и вектора 0D=--0В, противоположного вектору 0В (симметричного ему относительно начала координат): z1-z2=z1+(-z2)=0A+0D=0E=BA. Таким образом, разности (z1-z2) данных чисел соответствует вектор ВА другой диагонали параллелограмма 0АСВ.
Для иллюстрации остальных алгебраических действий над комплексными числами более удобна тригонометрическая форма.
Умножение. Пусть даны два комплексных числа z1=r1(cos?1+isin?1) и z2=r2(cos?2+isin?2). Перемножая их получим z1z2=r1r2(cos(?1+?2)+isin(?1+?2)). Следовательно, при умножении комплексных чисел их модули перемножаются, а аргументы складываются. Это правило верно и для любого числа сомножителей.
Деление. Если требуется разделить z1 на z2, то выполняем следующие преобразования: z1/z2=(z1z2)/(z2z2)=(r1(cos?1+isin?1)r2(cos?2-isin?2))/ (r2(cos?2+isin?2)r2(cos?2-isin?2))=(r1/r2)(cos(?1-?2

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.