На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 18.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


33
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет
имени Франциска Скорины"
математический факультет
Кафедра алгебры и геометрии
Конечные группы со сверхразрешимыми подгруппами четного индекса.
Курсовая работа
Исполнитель:
студентка группы H.01.01.01 М-31
Зелюткина В.И.
Научный руководитель: профессор,
доктор физико-математических наук,
профессор кафедры алгебры и геометрии
Монахов В.С.
Гомель 2005
Содержание
    Введение
      1. Конечные группы со сверхразрешимыми подгруппами четного индекса
      2. Конечные группы со сверхразрешимыми подгруппами непримарного индекса
      3. О неразрешимых группах с заданными подгруппами непримарного индекса
      Заключение
      Список литературы

Введение

Данная курсовая работа представлена в виде трех параграфов. В первом параграфе рассматриваются конечные группы со сверхразрешимыми подгруппами четного индекса. Здесь представлены:

A. Пусть - конечная группа и . Тогда и только тогда в группе все подгруппы четного индекса сверхразрешимы, когда выполняется одно из следующих утверждений:

1) - 2-группа;

2) - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому простому нечетному делителю порядка группы;

3) .

1. - наследственный гомоморф, т.е. каждая подгруппа и каждая факторгруппа группы также принадлежит .

2. , то ----свободна.

3. и не 2-нильпотентна, то силовская 2-подгруппа в элементарная абелева или типа .

4. - разрешимая группа и , то 2-длина группы не превосходит 1.

5. - разрешимая группа и . Если и силовская 2-подгруппа из неабелева, то центр совпадает с центром .

6. - разрешимая группа и . Тогда и только тогда , когда - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому нечетному простому делителю порядка группы .

Лемма 7. и - простая неабелева группа, то .

8. и , то .

9. для .

Во второй - конечные группы со сверхразрешимыми подгруппами непримарного индекса. Здесь представлены:

B. неразрешимая группа, у которой все подгруппы непримарного индекса сверхразрешимы, изоморфна одной из следующих групп:

1) или , где - 5-группа;

2) , где - 3-группа.

C. - разрешимая недисперсивная группа, у которой все подгруппы непримарного индекса сверхразрешимы. Тогда бипримарна, и - дисперсивная группа порядка , где .

1. конечная группа, в которой каждая подгруппа непримарного индекса сверхразрешима. Тогда в любой подгруппе и в любой фактор-группе группы каждая подгруппа непримарного индекса сверхразрешима.

2. - конечная группа и - простое число, делящее порядок . Если в нет -замкнутых подгрупп Шмидта, то -нильпотентна.

3. - сверхразрешимая группа Шмидта с нормальной силовской -подгруппой и циклической силовской -подгруппой , то .

4. группа дисперсивна по Оре, если в ней все подгруппы Шмидта сверхразрешимы.

5. конечная группа со сверхразрешимыми подгруппами непримарного индекса не более чем трипримарна.

6. группа порядка , где и - простые числа, и не делит , нильпотентна.

7. разрешимая группа со сверхразрешимыми подгруппами непримарного индекса дисперсивна.

8. - подгруппа примарного индекса конечной группы , то .

9. - группа порядка , где и - простые числа, и . Пpeдnoлoжим, что каждая подгруппа непримарного индекса сверхразрешима. Тогда либо -группа, либо группа Шмидта , где - элементарная абелева, или группа кватернионов.

10. - группа порядка , где и - простые числа, и . Предположим, что каждая подгруппа непримарного индекса сверхразрешима. Тогда факторгруппа либо -группа, либо изоморфна и делит .

Третий посвящен неразрешимым группам с заданными подгруппами непримарного индекса. Здесь представлены:

D. класс замкнут относительно прямых произведений и разрешим. Если в конечной неразрешимой группе нет неединичных нормальных -подгрупп, то изоморфна одной из следующих групп: и - простое число или 9; или и .

1. конечная неразрешимая группа принадлежит , то , где , а и .

2. класс замкнут относительно прямых произведений, и - неразрешимая группа, принадлежащая . Если - минимальная нормальная в подгруппа, то либо , либо - простая неабелева группа, и , где .

3. класс разрешим и - простая неабелева группа из , то:

1) , , и или - простое число;

2) , и - простое число;

3) , , ;

4) , или , или соответственно.

В каждом параграфе подробно изучена соответствующая тема с теоремами леммами и доказательствами последних.

1. Конечные группы со сверхразрешимыми подгруппами четного индекса

Строение конечных минимальных несверхразрешимых групп хорошо известно. В частности, они дисперсивны и их порядки делятся не более чем на три различных простых числа. Если условие сверхразрешимости накладывать не на все подгруппы, а только на некоторые, то возникают недисперсивные и даже неразрешимые группы. В описаны конечные группы со сверхразрешимыми подгруппами непримарного индекса. В настоящей заметке исследуется строение конечных групп со сверхразрешимыми подгруппами четного индекса. Доказывается следующая

A. Пусть - конечная группа и . Тогда и только тогда в группе все подгруппы четного индекса сверхразрешимы, когда выполняется одно из следующих утверждений:

1) - 2-группа;

2) - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому простому нечетному делителю порядка группы;

3) .

Здесь - центр группы , - наибольшая нормальная в подгруппа нечетного порядка. Через обозначим класс конечных групп, у которых все подгруппы четного индекса сверхразрешимы.

1. - наследственный гомоморф, т.е. каждая подгруппа и каждая факторгруппа группы также принадлежит осуществляется проверкой.

Отметим, что знакопеременная группа, но не содержится в . Поэтому не является формацией и не является классом Фиттинга.

Через обозначается симметрическая группа степени 4. Конечная группа называется -свободной, если в ней нет подгрупп и таких, что нормальна в и изоморфна .

2. , то ----свободна.

. Допустим противное, т.е. предположим, что существует секция , изоморфная . Тогда существует подгруппа индекса 2 в и изоморфна . Так как несверхразрешима, то - несверхразрешимая подгруппа четного в индекса. Противоречие. Лемма доказана.

Конечная группа называется 2-нильпотентной, если в ней существует нормальное дополнение к силовской 2-подгруппе. Полупрямое произведение нормальной подгруппы и подгруппы обозначается через .

3. и не 2-нильпотентна, то силовская 2-подгруппа в элементарная абелева или типа .

Если не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , см. , с. 192. Так как несверхразрешима, то индекс в группе нечетен, и - силовская 2-подгруппа из . Из свойств подгрупп Шмидта следует, что элементарная абелева или типа .

4. - разрешимая группа и , то 2-длина группы не превосходит 1.

следует из леммы 3 и леммы 3.4 из .

5. - разрешимая группа и . Если и силовская 2-подгруппа из неабелева, то центр совпадает с центром .

Если G - 2-группа, то лемма справедлива.

Пусть не 2-группа. По лемме 4 подгруппа нормальна в . Через обозначим -холловскую подгруппу из . Так как имеет четный индекс, то сверхразрешима и . Теперь содержится в центре , а поскольку , то - 2-группа. Группа не является 2-нильпотентной, поэтому существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то индекс нечетен и - силовская 2-подгруппа из . Следовательно, содержится в и по лемме 2.2 получаем, что содержится в . Лемма доказана.

6. - разрешимая группа и . Тогда и только тогда , когда - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому нечетному простому делителю порядка группы .

Пусть - разрешимая группа, и . Из лемм 3,4 и 5 получаем, что силовская 2-подгруппа нормальна в и является элементарной абелевой подгруппой. Так как - не 2-группа, то в существует 2-замкнутая подгруппа Шмидта , где - силовская 2-подгруппа из . Подгруппа несверхразрешима, поэтому ее индекс нечетен и силовская в . Из свойств групп Шмидта следует, что - минимальная нормальная в подгруппа порядка , и - показатель 2 по модулю , где делит . Поэтому - минимальная нормальная в подгруппа.

Централизатор содержит и нормален в , поэтому и . Значит самоцентрализуема.

Пусть - -холловская подгруппа в . Тогда - максимальная в подгруппа и совпадает со своим нормализатором. Предположим, что существует неединичный элемент в такой, что не содержится в . Так как и содержится в , то и . Пусть . Тогда , а по теореме Машке в существует подгруппа такая, что и допустима относительно , т.е. . Но индекс подгруппы четен поэтому эта подгруппа сверхразрешима и . Теперь централизует всю силовскую подгруппу , противоречие.

Следовательно, содержится в для всех неединичных элементов из и - группа Фробениуса с ядром , см. , с.630.

Пусть - произвольный нечетный делитель порядка группы , и пусть - -холловская подгруппа из . Так как самоцентрализуема, то не 2-нильпотентна и в существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то ее индекс нечетен и - элементарная абелева подгруппа порядка . Из свойств групп Шмидта следует, что - показатель 2 по модулю . Необходимость доказана.

Обратно, пусть - группа Фробениуса, ядро которой - минимальная нормальная в подгруппа порядка где - показатель 2 по каждому нечетному простому делителю порядка . Пусть - произвольная подгруппа из . Тогда либо , либо , либо , либо - группа Фробениуса с ядром . Если , то индекс нечетен. Если или , то 2-нильпотентна. Пусть - группа Фробениуса и не содержится в . Поскольку не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , где - нормальная в силовская подгруппа порядка , а - циклическая -подгруппа. Так как - элементарная абелева, то из свойств группы Шмидта вытекает, что - показатель 2 по модулю , значит и , т.е. . Лемма доказана полностью.

Следствие. Пусть - разрешимая группа и . Тогда и только тогда , когда каждая подгруппа из четного индекса является 2-подгруппой или группой нечетного порядка.

1. Пусть - элементарная абелева группа порядка . В группе ее автоморфизмов существует самоцентрализуемая циклическая подгруппа порядка см. , с.187. Число 11 является показателем 2 по модулю 23 и по модулю 89. Поэтому в классе существует группа Фробениуса, удовлетворяющая заключению леммы, и не являющаяся группой Шмидта.

Лемма 7. и - простая неабелева группа, то .

Если силовская 2-подгруппа в типа то по теореме из . Но в этой группе есть несверхразрешимая подгруппа четного индекса в нормализаторе силовской 2-подгруппы. По лемме 3 силовская 2-подгруппа в элементарная абелева. В группах Янко и Ри есть неразрешимые подгруппы четного индекса в централизаторах инволюций.

Рассмотрим группу , где и . Если , то - несверхразрешимая подгруппа четного индекса. Следовательно, . В силовская 2-подгруппа имеет порядок 4 и несверхразрешимые подгруппы изоморфны знакопеременным группам и .

Рассмотрим . Если не простое, то содержит подгруппу , , четного индекса, которая несверхразрешима. Значит, - простое. Несверхразрешимыми в являются только нормализаторы силовских 2-подгрупп.

Из теоремы Уолтера следует, что других простых групп, кроме рассмотренных, нет.

Через обозначим разрешимый радикал группы .

8. и , то .

Пусть - минимальная нормальная в подгруппа. Тогда . Если , то индекс в четен и должна быть сверхразрешимой. Противоречие. Поэтому - простая подгруппа и изоморфна или . Теперь нечетен, и - подгруппа из .

Если , то , поэтому .

Пусть , - простое. Так как - циклическая группа порядка , то либо совпадает с , либо G совпадает с . Пусть и - подгруппа из N порожденная инволюцией. Так как внешний автоморфизм группы централизует , см. , с.317, то по теореме Машке в силовской 2-подгруппе группы есть подгруппа индекса 2 в , допустимая относительно . Теперь - - не 2-нильпотентная подгруппа четного индекса в и не принадлежит .

9. для .

Пусть - подгруппа четного индекса в группе , где , и пусть - центральная инволюция в . Если , то - подгруппа в четного индекса. Так как , то сверхразрешима, поэтому и сверхразрешима.

Пусть не принадлежит . Тогда . Допустим, что несверхразрешима. Так как - подгруппа из , то из доказательства леммы 7 следует, что изоморфна или . Но теперь силовская 2-подгруппа в элементарная абелева, противоречие.

теоремы. Достаточность вытекает из лемм 6-9. Докажем необходимость. Пусть вначале - разрешимая группа, и . Если - не 2-группа, то легко проверить, что и по лемме 6 группа из пункта 2 теоремы.

Пусть неразрешима. Если , то по лемме 8 теорема верна. Пусть . Если разрешима, то разрешима и группа , противоречие. Следовательно, подгруппа имеет четный индекс в группе . Так как сверхразрешима и , то - 2-группа, отличная от силовской 2-подгруппы. Пусть - централизатор подгруппы в группе .

Для каждого нечетного простого подгруппа имеет четный индекс, поэтому сверхразрешима и 2-нильпотентна. Поэтому для всех нечетных и индекс в группе четен или равен 1. Если , то в есть нормальная подгруппа нечетного порядка, противоречие. Значит, и содержится в центре .

Если , то - квазипростая группа и не изоморфна . Так как , то по лемме 8 группа изоморфна или . Теперь по теореме из , с.646 группа изоморфна или .

Пусть - собственная в подгруппа. Тогда имеет нечетный индекс и . Так как - собственная в подгруппа, то из леммы 8 получаем, что изоморфна , a изоморфна . Противоречие. Теорема доказана полностью.

2. Конечные группы со сверхразрешимыми подгруппами непримарного индекса

Задача С.Н. Черникова об описании конечных групп, у которых подгруппы непримарного индекса нильпотентны, решена в 1975 г. С.С. Левищенко. Конечные группы с формационными подгруппами непримарных индексов рассматривались А.В. Сидоровым.

В настоящей статье изучаются конечные группы со сверхразрешимыми подгруппами непримарного индекса. Доказаны следующие две теоремы.

B. неразрешимая группа, у которой все подгруппы непримарного индекса сверхразрешимы, изоморфна одной из следующих групп:

1) или , где - 5-группа;

2) , где - 3-группа.

C. - разрешимая недисперсивная группа, у которой все подгруппы непримарного индекса сверхразрешимы. Тогда бипримарна, и - дисперсивная группа порядка , где .

Далее, если , то

и делит . Если , то

группа Шмидта, и Q - элементарная абелева группа или группа кватернионов.

Здесь - наибольшая нормальная в -подгруппа; - подгруппа Фиттинга группы ; - циклическая группа порядка .

1. конечная группа, в которой каждая подгруппа непримарного индекса сверхразрешима. Тогда в любой подгруппе и в любой фактор-группе группы каждая подгруппа непримарного индекса сверхразрешима.

Осуществляется непосредственной проверкой.

Группа называется -замкнутой, если в ней силовская -подгруппа нормальна, и -нильпотентной, если в ней имеется нормальное дополнение к силовской -подгруппе. Свойства групп Шмидта хорошо известны.

2. - конечная группа и - простое число, делящее порядок . Если в нет -замкнутых подгрупп Шмидта, то -нильпотентна.

Если - собственная подгруппа в группе , то удовлетворяет условию леммы, по индукции подгруппа -нильпотентна. Теперь группа либо -нильпотентна, либо -замкнутая группа Шмидта (см. , с. 192). Последнее исключается условием леммы.

3. - сверхразрешимая группа Шмидта с нормальной силовской -подгруппой и циклической силовской -подгруппой , то .

Все главные факторы сверхразрешимой группы имеют простые порядки. Так как - главный фактор, то

Определения дисперсивных групп см. в , с.251. Конечная группа называется трипримарной, если ее порядок делится точно на три различных простых числа.

4. группа дисперсивна по Оре, если в ней все подгруппы Шмидта сверхразрешимы.

Пусть в конечной группе все подгруппы Шмидта сверхразрешимы и - наименьшее простое число, делящее порядок . По лемме 3 в группе нет -замкнутых подгрупп Шмидта, поэтому -нильпотентна по лемме 2. По индукции нормальное -дополнение в дисперсивно по Оре, поэтому и вся группа дисперсивна по Оре.

5. конечная группа со сверхразрешимыми подгруппами непримарного индекса не более чем трипримарна.

Пусть - недисперсивная группа. По лемме 4 в ней имеется несверхразрешимая подгруппа , которая является группой Шмидта. Так как бипримарна, а индекс в группе по условию леммы примарен, то группа либо бипримарна, либо трипримарна.

6. группа порядка , где и - простые числа, и не делит , нильпотентна.

Пусть - рассматриваемая группа. Так как сверхразрешима и , то в имеется нормальная подгруппа порядка . Теперь изоморфна подгруппе группы автоморфизмов группы , которая является циклической порядка . Поскольку не делит , то силовская -подгруппа из содержится в . Теперь лежит в центре . Факторгруппа нильпотентна по индукции, значит, нильпоте и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.