На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Борьба с отложениями асфальто смолисто - парафиновых веществ при эксплуатации скважин

Информация:

Тип работы: реферат. Добавлен: 30.04.2012. Сдан: 2011. Страниц: 10. Уникальность по antiplagiat.ru: < 30%

Описание (план):


МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ
ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» 

        Кафедра разработки и эксплуатации газовых  и 
        газоконденсатных месторождений 
         

РЕФЕРАТ
по  дисциплине: Основы нефтегазопромыслового  дела
на  тему: Борьба с отложениями асфальто – смолисто - парафиновых веществ  при эксплуатации скважин. 
 
 

Выполнила: студентка гр.ГГ-10-02                                     К. В. Котельникова
Проверил: старший преподаватель                                       С. Б. Харина 
 
 
 
 
 

Уфа, 2010 г.

СОДЕРЖАНИЕ:

 
1. Введение……………………………………………………………………………3-4
1.1 Механизм и условия формирования АСПО в скважине………………...5-8
1.2 Состав АСПО…………………………………………………………………..9-11
2.Методы борьбы с асфальто-смолисто-парафиновыми отложениями..12
2.1 Механические методы борьбы с АСПО…………………………………12-16
2.2 Физические методы  борьбы с АСПО……………………………………17-18
2.3 Химические методы  борьбы с АСПО…………………………...………19-21.
2.4 Методы теплового воздействия борьбы с АСПО……………………22-24
2.5Вибрационные методы………………………………………………………...25      
2.6  Применение покрытий  для борьбы с  АСПО…………………………25-
3. Заключение…………………………………………………………………………
4. Использованная литература……………………………………………… 
 
 

                        
       
       
       
       
       
       
       
       

ВВЕДЕНИЕ:
           Эксплуатация нефтедобывающих скважин на месторождениях осложнена многими факторами. Большие потери на промыслах происходят от осаждения в парах нефтенасосных пород, в колоннах скважин и в подъемных трубах мазеобразной или твердой массы темного цвета, известной под названием парафин – АСПО (асфальто-смолистые- парафинные отложения) (рис.1).
              
      Рис.1 Асфальто-смолистые-парафиновые отложения   в НКТ
       Асфальто-смолистые-парафиновые отложения (АСПО) содержатся в составе нефтей почти во всех нефтедобывающих районах. Химический состав АСПО зависит от свойств и состава добываемой нефти, термо- и гидродинамических условий продуктивных пластов, геологических и физических особенностей, способа разработки и эксплуатации месторождений.
         Парафиновые отложения в нефтепромысловом оборудовании формируются в основном вследствие выпадения (кристаллизации) высокомолекулярных углеводородов при снижении температуры потока нефти. В зависимости от условий кристаллизации состав парафиновых отложений даже в одной скважине весьма разнообразен. Различаются они по содержанию асфальтенов, смол и твердых углеводородов. Нередко парафиновые отложения содержат воду и механические примеси.
           На интенсивность парафиновых отложений оказывает влияние обводненность продукции в скважинах.
         АСПО снижают производительность скважин, увеличивают износ оборудования, расходы электроэнергии и давление в выкидных линиях, сокращают межремонтный период скважин, увеличивают трудовые и материальные затраты и повышают себестоимость добываемой продукции. Поэтому борьба с АСПО – актуальная задача при интенсификации добычи нефти.
         Методы борьбы с АСПО предусматривают проведение работ по предупреждению выпадения и удалению уже образовавшихся осадков.
Предупреждение  образования АСПО достигается нанесением защитных покрытий на поверхности труб и другого оборудования из гидрофильных материалов, а также введением  в поток добываемой нефти различных  ингибиторов.
        В настоящее время известно около двадцати различных способов борьбы с отложениями парафина. Каждый из методов борьбы с отложениями парафина требует применения на скважине более или менее сложного оборудования и всевозможных устройств, нуждающихся в повседневном контроле за их работой. Подбор эффективных методов предупреждения и удаления парафиновых отложений обеспечивает продолжительный межремонтный период  работы скважин, повышает нефтегазоотдачу и сокращает материальные затраты.
         Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, физическими методами, тепловой и химической обработкой продукции скважин. 

         1.1 Механизм и условия формирования АСПО в скважине.
           Современные представления о механизме образования парафиновых отложений на скважинном оборудовании можно условно подразделить на осадочно-объемную теорию и кристаллизационно-поверхностную.
           Первая предполагает, что кристаллы парафина образуются в объеме движущейся нефти и постепенно оседают на поверхности металла и закрепляются на ней, образуя постепенно осадочный слой органических отложений.
        По второму механизму - парафиновые кристаллы образуются непосредственно на металлической поверхности и постепенно кристаллизуются в комплексы. Процесс кристаллизации парафина на поверхности идет за счет подпитки из нефтяного раствора.
        Существует еще и третий механизм - это смешанным путем, имеющим все особенности первых двух. При этом состояние поверхности и ее природы существенным образом влияют на течение процесса образования парафиновых отложений.
         Таким образом, принимая тот или иной механизм образования АСПО за базу, подходы в борьбе с предупреждением, органических отложений будут разные.
         Необходимыми условиями формирования парафиновых отложений являются [1,2,3]:
- снижение давления на забое скважины и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;
- интенсивное газовыделение;
- уменьшение температуры в пласте и стволе скважины;
- изменение скорости движения газожидкостной смеси и отдельных ее компонентов;
- состав углеводородов в каждой фазе смеси;
- соотношение объема фаз;
- состояние поверхности труб.
         Интенсивность образования АСПО зависит от преобладания одного или нескольких факторов, которые могут изменяться по времени и глубине, поэтому количество и характер отложений не являются постоянными.
         Существует множество и других факторов способствующих или препятствующих интенсивному формированию парафиновых отложений.
К наиболее существенным из них могут быть отнесены:
    Скорость потока. Как показали исследования, в начале интенсивность отложений растет с увеличением скорости за счет увеличения массового переноса, а затем снижается, поскольку возрастают касательные напряжения, повышающие прочность сцепления парафина с поверхностью оборудования. При больших скоростях движения поток смеси охлаждается медленнее, чем при малых, что замедляет процесс образования АСПО [3].
2. Влияние газовыделения. Лабораторные исследования показали [2], что на интенсивность образования парафиноотложений оказывает влияние процесс выделения и поведения газовых пузырьков в потоке смеси. Известно, что газовые пузырьки обладают способностью флотировать взвешенные частицы парафина. При контакте пузырька с поверхностью трубы частицы парафина соприкасаются со стенкой и откладываются на ней. В дальнейшем процесс отложения парафина нарастает вследствие его гидрофобности. На стенке трубы образуется слой из кристаллов парафина и пузырьков газа. Чем менее газонасыщен этот слой, тем большую плотность он имеет. Поэтому более плотные отложения образуются в нижней части подъемных труб, где пузырьки газа малы и обладают большей силой прилипания к кристаллам парафина и стенкам трубы.           3.  Наличие механических примесей, являющихся активными центрами.                                                                                                                                                                                                         4. Кристаллизация, может привести к уменьшению интенсивности отложения парафина за счет снижения состояния перенасыщения нефти и увеличение его доли кристаллизации в объеме.                                                     5. Состояние поверхности оборудования (подложки) оказывает существенное влияние на прочность отложений, в частности, полярность материала подложки и качество поверхности (гладкость). Чем выше значение полярности материала и ее гладкость, глянцевитость (чистота обработки), тем меньше адгезия, а, следовательно, при меньших скоростях потока будут срываться парафиновые образования с таких поверхностей. 6. Влияние электризации. Процесс образования АСПО носит адсорбционный характер. Адсорбционные процессы сопровождаются возникновением двойного электрического слоя на поверхности контакта парафина с газонефтяным потоком. При механическом нарушении равновесного состояния данного слоя на поверхности трубы или слоя парафина появляются некомпенсированные заряды статического электричества, то есть происходит электризация как поверхности трубы, так и поверхности кристаллов парафина, что усиливает адгезию парафина к металлу [4].
         Обводненность продукции скважины. Она оказывает двоякое действие. Вначале при малом содержании воды в нефти и прочих равных условиях наблюдается некоторое повышение интенсивности отложений парафина, а затем с увеличением доли воды в потоке интенсивность снижается как за счет повышения температуры потока (теплоемкость воды в 1,6... 1,8 раза больше нефти), так и за счет обращения фаз, при котором ухудшается контакт нефти с поверхностью оборудования.
Схема движения нефти в полости НКТ, при высокой обводненности продукции, для гидрофильной и гидрофобной  поверхностей представлена на (рис. 2).

Рис.2 Схема движения нефти в полости НКТ при высокой обводненности продукции.
а) поверхность  металла гидрофобная;      б) поверхность гидрофильная;
1 —  штанга;  2-НКТ; 3 – нефть; 4-АСПО; 5 – вода. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2 Состав АСПО
         Без знаний о составе и основных свойствах АСПО, основного объекта исследований, не может вестись работа по предотвращению отложений на нефтепромысловом оборудовании.
        АСПО — природный композитный материал, состоящий из 10-15 органо-минеральных веществ и соединений. Отложения представляют собой, как правило, мазе подобную суспензию или эмульсию с высокой адгезией к различным поверхностям.
         Отложения на поверхности нефтепромыслового оборудования в основном формируются органическими и неорганическими веществами.
Из органических веществ в составе отложений АСПО имеются: высокомолекулярные парафины -20-60%; селикагелевые смолы -10-25%;асфальтены -до 5%; связанная нефть; оклюдированный газ. [2].
         В состав отложений входят и неорганические вещества : механические примеси до 15 %; соли; вода 4- 49%.
        Парафины, в основном представлены углеводородами с числом атомов углерода в молекуле от 22 до 28. Молекулы н-алканов при охлаждении формируют кристаллы. В кристалле они имеют форму плоских зигзагообразных цепей высокомолекулярных н-алканов, параллельных между собой.
        Средняя температура плавления нефтяных парафинов на подавляющем большинстве залежей находится в пределах от 47—610 С В широком диапазоне содержания парафинов средняя температура плавления изменяется мало и составляет 520С. Отклонение от среднего значения сравнительно небольшое (±1,3...2,8° С). Это указывает на то, что состав нефтяных парафинов в подавляющем большинстве залежей оказывается практически одинаково и мало зависит от содержания парафинов в нефти.
        Асфальтены и смолы относятся к поверхностно-активным компонентам нефти. Содержание этих компонентов меняется в широких пределах. Присутствие этих компонентов оказывает значительное влияние на процесс кристаллизации парафинов. Асфалътены и смолы называют модификаторами кристаллической структуры. В присутствии смол и асфалътенов происходит кристаллизация парафинов, при которой из раствора выделяются недоразвитые монокристаллы, возникшие из немногих центров кристаллизации. Они приобретают форму древовидных и шарообразных образований, и молекулы смол либо встраиваются в кристаллическую решетку парафина, либо адсорбируются на поверхности его кристаллов, тем самым изменяют форму кристаллов. В результате получаются крупные кристаллы неправильной формы.
        Смолы неоднородны по своему составу. Они содержат нафтеновые и ароматические элементы, парафиновые цепи разной длины и степени разветвленности, а также гетеро - атомы серы, кислорода и азота.
         В случае, когда в составе добываемой нефти преобладают парафины, по мере подъема и охлаждения нефти увеличивается толщина отложений, из-за интенсивной кристаллизации и формировании более прочной крупнокристаллической структуры. Это обуславливает формирование профилей АСПО с постоянным нарастанием толщины к устью скважины.   
         Связь между составом АСПО и составом добываемой нефти выявлена на основе анализов. В составе АСПО парафинов и асфальтенов содержится намного больше, чем в нефти. А по содержанию селикагелевых смол АСПО и нефть мало отличаются.
        Выявлена такая закономерность, что прямой связи между содержанием парафина и интенсивностью его отложений нет. Исследованиями нефти установлено, что отсутствие такой связи обусловлено, прежде всего существенным различием состава твердых углеводородов парафина, а именно различием соотношения ароматических, нафтеновых, и метановых соединений в высокомолекулярной части углеводородов, которые при стандартных методах исследованиях нефти не определяются.
         Установлено, что смолистые компоненты, различающиеся составом и полярностью в зависимости от типа нефти, являются естественными депрессорами, понижающими температуру застывания нефтей и нефтепродуктов.[1] 
 
 
 
 
 
 

          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Методы борьбы с асфальто-смолисто-парафиновыми отложениями.
2.1Механические  методы. 
        Механические методы предполагают удаление уже образовавшихся отложений АСПО на НКТ. Для этой цели разработана целая гамма скребков различной конструкции.

         По конструкции и принципу действия скребки подразделяют на:
1. Центраторы-депарафинизаторы 
2. Скребки  – центраторы.
3. Плавающие  скребки.
4.  "Летающие" скребки.

         1.Центраторы - депарафинизаторы. Предлагаемый способ борьбы с отложениями парафина основан на создании критических скоростей движения нефтяных эмульсий в НКТ. Критические скорости потока создаются за счет заданного кольцевого сечения между стенками НКТ и центратором цилиндрической формы, неподвижно наплавленного на тело штанги. При критической скорости отложения парафина на стенках НКТ и теле штанг не происходит. Центраторы применяются в комплекте с НКТ покрытыми гранулированным стеклом.

          Центратор —депарафинизатор выполнен в виде двух соосных конусов с обращенными друг к другу основаниями и цилиндрической вставкой между ними, с расчетными геометрическими размерами. Глубина спуска остеклованных НКТ составляет от устья до 1000 метров, центраторов от устья до 900 метров. Критическая скорость составляет 6 м/сек, при этом сила сцепления парафина с поверхностью труб преодолевается скоростью потока.

 2.Скребки -центраторы.

  Рис.3  Скребки –центраторы.
        

         Обеспечивают очистку насосно - компрессорных труб и штанг от парафина. Скребки различных конструкций изготовляются из полимерных материалов. Скребки - центраторы жестко фиксируются на теле штанги, а между ними располагаются подвижные скребки. Подвижные скребки обеспечивают удаление АСПО с тела штанги, а неподвижные - с внутренней поверхности НКТ.

         Скребок - центратор имеет двойное назначение. Он выполняет функции скребка и предохраняет от износа систему «труба – штанга - муфта». При применении скребков - центраторов вместе со штанговращателем достигается предотвращение парафинизации и защита от износа насосных штанг, муфт, НКТ. Косые пазы, выполненные по периметру рабочей поверхности скребка, обеспечивают достаточный проток жидкости.
         Очистка поверхностей НКТ происходит при возвратно-поступательном и вращательном движении скребка. При этом происходит соскабливание парафина со стенок труб в процессе работы скважины.
В зависимости  от типа размеров труб и штанг скребки  предлагаются нескольких типов размеров (таблица 1). На одну насосную штангу устанавливают 5-6 скребков, т.е. интервал между двумя соседними скребками-центраторами составляет от 1,4 до 1,6м.
   Таблица 1. Зависимость размера скребка от размера трубы и штанги.
                                    Труба Штанга            Скребок
                      Усл. Диаметр                       Наруж. диаметр                       Внутр. диаметр                       Толщина стенки.                       Диаметр                       Наруж. Диаметр                       Маркировка
                      мм,                       мм,                       мм,                       мм,                       мм,                       мм,                       мм,
                      73                       73
                      73                       73
                      59                       59
                      7,0                       7,0
                      19                       22
                      56                       56
                      3/4// х2,5// 7/8//x2,5//
 
         Интервал установки должен быть меньше длины хода устьевого штока. Длина колонны штанг, оборудованной скребками- центраторами, колеблется до 1000 м, в зависимости от интервала отложений парафина на стенках НКТ и участков искривления ствола скважины.
        Срок службы скребка по паспорту 5-7 лет. Результаты показывают, что применение скребков- центраторов весьма эффективно. Об этом свидетельствуют увеличение дебита, увеличение коэффициента эксплуатации оборудования.
        Штанговращатели обеспечивают медленное поворачивание колонны, штанг и плунжера (на заворот) при возвратно-поступательном движении штока. Их применяют при эксплуатации искривленных скважин для предотвращения одностороннего истирания штанг, муфт и плунжера насоса, для предотвращения отворотов штанговых колонн, а также в случаях применения на колонне штанг скребков для очистки колонны НКТ от отложений парафина.
          Действие штанговращателя осуществляется за счет возвратно-поступательного движения канатной подвески при соединении рычага штанговращателя канатом (диаметром 6-8 мм) с рамой станка- качалки. Для надежной работы необходимо при монтаже обеспечить такое натяжение каната, соединяющего рычаг штанговращателя с рамой станка-качалки, при котором за один ход устьевого штока соединенный с концом рычага, натягивается и перемещает вверх храповое колесо штанговращателя на один зуб. При движении вниз он ослабляется, а канат натягивается и возвращается в первоначальное положение. Рычаг соединяется канатом диаметром 6-9 мм с рамой станка-качалки.
          В процессе эксплуатации храповик, червячную пару и упорный подшипник необходимо периодически смазать (раз в 10 дней) рекомендуемой смазкой (в зимний период - жидкой, а в летний - густой). Угол поворота колонны штанг за одно качание составляет от 10 до 30° С в зависимости от регулирования.
        При применении механического метода борьбы с АСПО необходимо учитывать возможность проявления в определенных условиях некоторых негативных последствий, обусловленных увеличением напряжений в штангах, в частности возможность роста частоты обрывов и отворотов штанг при длительной работе скважин оборудованных скребками.
         Увеличение максимальной и уменьшение минимальной нагрузки приводит к увеличению приведенного напряжения цикла и в ряде случаев запас усталостной прочности может оказаться недостаточным, что приведет к увеличению количества обрывов штанг. Возникновение ощутимого поршневого эффекта обусловлено формированием водонефтяных эмульсий при движении обводненной продукции. Поэтому использование скребков в обводненных скважинах может приводить к росту обрывности штанг. При выборе материала штанг для использования со скребками необходимо ориентироваться на штанги из легированной стали.
         Очистка лифтовых труб от парафина производится скребком, закрепленным на проволоке. Движение скребка вниз осуществляется под действием силы тяжести скребка и груза. Для облегчения движения скребка при спуске сальник ослабляется, а скребок, двигаясь, уменьшается в поперечном сечении. Подъем скребка, осуществляется за счет тягового усилия лебедки.
3. Плавающие скребки.
Рис.4 Плавающие скребки
    "Летающие" скребки.
         Оснащены ножами-крыльями, которые раскрываются при движении вверх, что обеспечивает им подъемную силу. Применяют, как правило, в искривленных скважинах.
        Использование такого метода борьбы с АСПО значительно осложняется тем, что для его применения часто необходима остановка работы скважины и предварительная подготовка поверхности труб (для некоторых видов скребков). Кроме того, возможно застревание скребков, обрыв их крепления и некоторые другие осложнения.
         В последние годы вместо металлических пластинчатых скребков на штангах укрепляют пластиковые скребки .Они одновременно играют роль центраторов. При использовании скребков-центраторов протирается НКТ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Физические методы.
          Методы, относимые к физическим, основаны на воздействии механических и ультразвуковых колебаний (вибрационные методы), а также электрических, магнитных и электромагнитных полей на добываемую и транспортируемую продукцию.
          Вибрационные методы позволяют создавать ультразвуковые колебания в области парафинообразования, которые, воздействуя на кристаллы парафина, вызывают их микроперемещение, что препятствует осаждению парафина на стенках труб [1].
          Воздействие магнитных полей следует отнести к наиболее перспективным физическим методам. Использование в нефтедобыче магнитных устройств для предотвращения АСПО началось в пятидесятые годы прошлого века, но из-за малой эффективности широкого распространения не получило. Отсутствовали магниты, достаточно долго и стабильно работающие в условиях скважины. В последнее время интерес к использованию магнитного поля для воздействия на АСПО значительно возрос, что связано с появлением на рынке широкого ассортимента высокоэнергетических магнитов на основе редкоземельных материалов. В настоящее время около 30 различных организаций предлагает магнитные депарафинизаторы [11-19],рис.5.

Рис.5. Магнитный депарафинизатор.

 
           Установлено [13], что под воздействием магнитного поля в движущейся жидкости происходит разрушение агрегатов, состоящих из субмикронных ферромагнитных микрочастиц соединений железа, находящихся при концентрации 10-100 г/т в нефти и попутной воде. В каждом агрегате содержится от нескольких сотен до нескольких тысяч микрочастиц, поэтому разрушение агрегатов приводит к резкому (в 100-1000 раз) увеличению концентрации центров кристаллизации парафинов и солей и формированию на поверхности ферромагнитных частиц пузырьков газа микронных размеров. В результате разрушения агрегатов кристаллы парафина выпадают в виде тонкодисперсной, объемной, устойчивой взвеси, а скорость роста отложений уменьшается пропорционально уменьшению средних размеров выпавших совместно со смолами и асфальтенами в твердую фазу кристаллов парафина. Образование микропузырьков газа в центрах кристаллизации после магнитной обработки обеспечивает, по мнению некоторых исследователей, газлифтный эффект, ведущий к некоторому росту дебита скважин. 
 
 
 
 
 
 
 
 
 

2.3Химические  методы борьбы .
           Химические методы базируются на дозировании в добываемую продукцию химических соединений, уменьшающих, а иногда и полностью предотвращающих образование отложений. В основе действия ингибиторов парафиноотложений лежат адсорбционные процессы, происходящие на границе раздела между жидкой фазой и поверхностью металла трубы [3].
           Химические реагенты подразделяются на смачивающие, модификаторы, депрессаторы и диспергаторы [4]:
          Смачивающие реагенты
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.