На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Мейоз. Особенности первого и второго деления. Биологическое значение мейоза

Информация:

Тип работы: контрольная работа. Добавлен: 03.05.2012. Сдан: 2011. Страниц: 3. Уникальность по antiplagiat.ru: < 30%

Описание (план):


     Мейоз 

     Мейозом называется особый способ деления эукариотических  клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение). Часто уменьшение числа хромосом называется редукцией. Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n). Минимальное число хромосом в клетке называется основным числом (x). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется геном. Количество геномов в клетке называется геномным числом (?). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие геномного числа совпадают. Например, у человека n=x=23 и 2n=2x=46.
     Типичный  мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным, реже – гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.
     Интерфаза
     Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.
     Первое  деление мейоза (редукционное деление, или мейоз I)
     Сущность  редукционного деления заключается  в уменьшении числа хромосом в  два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).
     Профаза 1 (профаза первого  деления) состоит  из ряда стадий:
     В первой стадии - лептотене, следующей непосредственно за окончанием предмейотического синтеза ДНК, выявляются тонкие длинные хромосомы. Они отличаются от в профазе митоза двумя особенностями: во-первых, в них не обнаруживается двойственность, т. е. не видно сестринских хроматид, во-вторых, лептотенные хромосомы имеют выраженное хромомерное строение. Хромомеры - узелки. Участки плотной компактизации ДНК, размеры и расположение которых строго видоспецифично. Хромомеры встречаются как в мейотических, так и в митотических хромосомах, однако в последних без специфической обработки они не видны.
     Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты. Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.
     Третья  стадия профазы I деления - пахитена - у большинства видов самая длительная. Под световым микроскопом видны конъюгировавшие хромосомы с более или менее четко выраженным хромомерным строением. Приблизительно в середине пахитены между хроматидами гомологичных хромосом появляется продольная щель, которая ясно показывает, что бивалент - это, по существу, четверная хромосомная структура. В пахитене происходит важное генетическое событие - кроссинговер, или перекрест хроматид гомологичных хромосом. В результате этого в каждом гомологе смешиваются отцовский и материнский наследственный материал.

     Рис. 5.9. Многократный кроссинговер между гомологичными хромосомами:
     А—Е, а—е — локусы хромосом
     Результаты  кроссинговера становятся заметными  лишь в четвертой и пятой стадиях  профазы I деления -  диплотене и диакинезе. Диплотена начинается с момента расхождения гомологичных хромосом. В это время в точках кроссинговера видны перекрещенные хроматиды. Область перекреста хроматид называют хиазмой. Число хиазм в целом соответствует количеству актов кроссинговера в биваленте и пропорционально длине гомологичных хромосом, его составляющих.
     Диакинез (стадия расхождения бивалентов) характеризуется максимальной спирализацией, укорочением и утолщением хромосом. Хиазмы постепенно терминализуются, т. е. приближаются к концам бивалента и спадают с него. Таким образом, по мере приближения к метафазе первого деления число хиазм уменьшается. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.
      

     Рис. 5.8. Стадия диакинеза в мейозе у человека. Стрелками указаны хиазмы.
     Метафаза I (метафаза первого  деления)
     В прометафазе I ядерная оболочка разрушается (фрагментируется). Формируется веретено деления. Далее происходит метакинез – биваленты перемещаются в экваториальную плоскость клетки.
     Анафаза I (анафаза первого  деления)
     Гомологичные  хромосомы, входящие в состав каждого  бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит. Процесс распределения хромосом по дочерним клеткам называется сегрегация хромосом.
     Телофаза I (телофаза первого  деления)
     Гомологичные  двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с. В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.
     Интеркинез
     Интеркинез  – это короткий промежуток между  двумя мейотическими делениями. Отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.
     Второе  деление мейоза (эквационное деление, или мейоз II)
     В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).
     Профаза II (профаза второго  деления)
     Не  отличается существенно от профазы  митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В  каждой из дочерних клеток формируется веретено деления.
     Метафаза II (метафаза второго  деления)
     Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости  могут лежать в одной плоскости, могут быть параллельны друг другу или взаимно перпендикулярны.
     Анафаза II (анафаза второго  деления)
     Хромосомы разделяются на хроматиды (как при  митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.
     Телофаза II (телофаза второго  деления)
     Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.
     Эта классическая схема мейоза имеет  исключения. Например, у растений рода ожика (Luzula) и насекомых семейства кокцид (Coccidae) в первом делении расходятся хроматиды, а во втором - гомологичные хромосомы, однако и в этих случаях в результате мейоза происходит редукция числа хромосом. Различия между сперматогенезом и оогенезом у животных и образованием микроспор и мегаспор у растений не отражаются на поведении хромосом в ходе мейоза, хотя размеры и судьбы сестринских клеток оказываются разными.
     

     Рис. 5.5. Стадии мейоза 

     Типы  мейоза
     В зависимости от места мейоза в  жизненном цикле организмов различают 3 типа мейоза.
    1. Гаметный, или терминальный, мейоз (у всех многоклеточных животных и ряда низших растений), происходит в половых органах и приводит к образованию гамет.
    2. Зиготный, или начальный, мейоз (у многих грибов и водорослей), происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет.
    3. Споровый, или промежуточный, мейоз (у высших растений), имеет место накануне цветения и приводит к образованию гаплоидного гаметофита, в котором позднее образуются гаметы. У простейших (Protozoa) встречаются все 3 типа Мейоз
     Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения. Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).
     Биологическое значение мейоза
     Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в следующем:
     1. Поддержание постоянства числа  хромосом при наличии полового  процесса.
     2. Образование большого количества  новых комбинаций негомологичных хромосом.
     3. В процессе кроссинговера имеют место рекомбинации генетического материала.
     Отличия митоза от мейоза
     Отличия мейоза от митоза по итогам:
     1. После митоза получается две  клетки, а после мейоза – четыре.
     2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).
     3. После митоза получаются одинаковые  клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).
     4. После митоза количество хромосом  в дочерних клетках остается  таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения  обеспечивает постоянство числа хромосом).

Рис. 7. Отличие  митоза от мейоза. 

     Отличия мейоза от митоза по ходу
     1. В митозе одно деление, а  в мейозе – два (из-за этого  получается 4 клетки).
     2. В профазе первого деления  мейоза происходит конъюгация (тесное  сближение гомологичных хромосом) и кроссинговер (обмен участками  гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.
     3. В анафазе первого деления  мейоза происходит независимое  расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.
     4. В интерфазе между двумя делениями  мейоза удвоения хромосом не  происходит, поскольку они и так двойные. 
 


и т.д.................


Фаза Митоз Мейоз
1 деление 2 деление

Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.