Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Порядковые определения. Топологические определения. Вполне упорядоченные множества и их свойства. Конечные цепи и их порядковые типы. Порядковый тип. Свойства ординальных чисел. Пространство ординальных чисел W(1) и его свойства.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 08.08.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


24
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ
Математический факультет
Кафедра математического анализа и МПМ
Выпускная квалификационная работа
ЛИНЕЙНО УПОРЯДОЧЕННОЕ ПРОСТРАНСТВО ОРДИНАЛЬНЫХ ЧИСЕЛ

Выполнила студентка 5 курса
математического факультета Лоптева О. Н.
_____________________________/подпись/
Научный руководитель:
к.ф.-м.н., доц. Варанкина В. И.
_____________________________/подпись/
Рецензент:
к.ф.-м.н., доц. Здоровенко М. Ю.
_____________________________/подпись/
Допущена к защите в ГАК
Зав. кафедрой_______________________ Крутихина М. В.
«____»______________________________
Декан факультета____________________ Варанкина В. И.
«____»______________________________
КИРОВ, 2003
ОГЛАВЛЕНИЕ

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Глава 1

Исходные определения

§1. Порядковые определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

§2. Топологические определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Глава 2

Линейно упорядоченное пространство ординальных чисел

§1. Вполне упорядоченные множества и их свойства . . . . . . . . . . . . . . . . . .8

§2. Конечные цепи и их порядковые типы . . . . . . . . . . . . . . . . . . . . . . . . . . 10

§3. Порядковый тип . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

§4. Свойства ординальных чисел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

§5. Пространство ординальных чисел W(1) и его свойства. . . . . . . . . . . .18

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ВВЕДЕНИЕ

Идеи топологии были высказаны ещё выдающимися математиками 19 века: Н. И. Лобачевским, Риманом, Пуанкаре, Кантором, Гильбертом и Бауэром. Однако общая топология, как её понимают сейчас, ведёт начало от Хаусдорфа («Теория множеств», 1914).
Истоки теории упорядоченных и частично упорядоченных алгебраических систем лежат в геометрии, функциональном анализе и алгебре.
Линейно упорядоченные пространства, в том числе и линейно упорядоченное пространство ординальных чисел, объединяют в себе две структуры: порядковую и топологическую. Систематического изложения теории пространства ординальных чисел не существует. Этим объясняется актуальность выбранной темы.
Целью дипломной работы является исследование пространства ординальных чисел, его порядковых и топологических свойств. В первой главе будут даны основные понятия теории множеств и общей топологии, а во второй главе будет введено понятие порядкового типа, установлены свойства порядковых чисел, а также проведено исследование пространства ординальных чисел, имеющее важное значение для данной работы. Будет доказана хаусдорфовость, нормальность, локальная компактность, счётная компактность, неметризуемость и некоторые другие свойства линейно упорядоченного пространства ординальных чисел.



ГЛАВА 1. Исходные определения и теоремы.

§1. ПОРЯДКОВЫЕ ОПРЕДЕЛЕНИЯ.
Определение 1.1. Упорядоченным множеством называется непустое множество Х вместе с заданным на нём бинарным отношением порядка, которое:
рефлексивно: а a;
транзитивно: a b c a c;
антисимметрично: a b a a = b ( для любых a, b, cX ).
Элементы упорядоченного множества называются сравнимыми, если
а < b, a = b или b < a.
Замечание: по определению будем считать, что a < b, если a b и a b.
Определение 1.2. Упорядоченное множество называется линейно упорядоченным, или цепью, если любые его два элемента сравнимы.
Определение 1.3. Элемент а упорядоченного множества Х называется наименьшим (наибольшим) элементом множества АХ, если аА и а х
(х а) для любого х А.
Определение 1.4. Элемент а упорядоченного множества Х называется минимальным (максимальным) элементом множества АХ, если в А нет элементов, меньших (больших) а, то есть если х а (а х) для некоторого х, то х = а.
Определение 1.5. Пусть А - непустое подмножество линейно упорядоченного множества Х. Элемент а из Х называется верхней (нижней) гранью множества А, если он больше (меньше) любого элемента из А.
Определение 1.6. Если множество А имеет хотя бы одну верхнюю (нижнюю) грань, то А называется ограниченным сверху (ограниченным снизу).
Определение 1.7. Множество А называется ограниченным, если оно ограничено и сверху и снизу.
Определение 1.8. Точной верхней гранью множества А называется наименьший элемент множества всех верхних граней множества А. Обозначается sup A.
Определение 1.9. Точной нижней гранью множества А называется наибольший элемент множества всех нижних граней множества А. Обозначается inf A.
Определение 1.10. Пусть <X, > - линейно упорядоченное множество, содержащее, по крайней мере, два элемента. Для а, bX, a < b положим
(a, b) = {xX: a < x < b}. Такие множества будем называть интервалами в Х. Множество [a, b] = { xX : a x b} называется отрезком в Х.
Определение 1.11. Упорядоченное множество называется вполне упорядоченным, если каждое его непустое подмножество имеет наименьший элемент.
Определение 1.12. Пусть М и М1 - упорядоченные множества и пусть f - взаимно однозначное отображение М на М1. Отображение сохраняет порядок, если из того, что a b ( a, bM ), следует, что f (a) f (b) (в М1). Отображение f называется изоморфизмом упорядоченных множеств М и М1, если соотношение f (a) f (b) выполнено в том и только в том случае, если a b. При этом множества М и М1 называются изоморфными между собой.
§2. ТОПОЛОГИЧЕСКИЕ ОПРЕДЕЛЕНИЯ.
Определение 1.13. Топологическим пространством называется пара (Х,), состоящая из множества Х и некоторого семейства подмножеств множества Х, удовлетворяющая следующим условиям:
1) множество Х и принадлежат ;
2) пересечение конечного числа множеств из принадлежат ;
3) объединение любого числа множеств из принадлежит .
Условия 1 - 3 называются аксиомами топологического пространства, его элементы - точками пространства. Подмножества множества Х, принадлежащие семейству , называются открытыми в Х. Семейство открытых подмножеств пространства Х называется также топологией на Х.
Определение 1.14. Замкнутым множеством называется множество, которое является дополнением к открытому.
Определение 1.15. Окрестностью точки х топологического пространства называется любое открытое множество U, содержащее х.
Определение 1.16. Топологическое пространство Х называется компактным, если из любого его покрытия открытыми множествами можно выделить конечное подпокрытие.
Определение 1.17. Топологическое пространство Х называется компактным, если любая его центрированная система замкнутых множеств в Х имеет непустое пересечение.
Определения 1.16 и 1.17 равносильны ([5]).
Определение 1.18. Пространство Х называется локально компактным, если каждая точка имеет окрестность, замыкание которой компактно.
Определение 1.19. Топологическое пространство Х называется счётно компактным, если из каждого счётного открытого покрытия пространства Х можно выбрать конечное подпокрытие.
Определение 1.20. Топологическое пространство Х называется счётно компактным, если каждое его бесконечное подмножество содержит хотя бы одну предельную точку.
Определения 1.19 и 1.20 равносильны ([5]).
Определение 1.21. Пространство называется компактификацией топологического пространства Х, если:
1) компактно;
2) Х - подпространство ;
3) Х плотно в .
Определение 1.22. Топологическое пространство Х называется Т1-пространством, если для каждой пары различных точек х1, х2 существует открытое множество , такое, что х1 и х2.
Определение 1.23. Если любые две различные точки х и у топологического пространства Х имеют непересекающиеся окрестности, то пространство Х называется хаусдорфовым пространством или Т2-пространством.
Определение 1.24. Топологическое пространство Х называется регулярным пространством, или Т3-пространством, если Х есть Т1-пространство и для любого и каждого замкнутого множества , такого, что , существуют открытые множества U1 и U2, такие, что 1, 2 и U1U2 = .
Определение 1.25. Топологическое пространство Х называется тихоновским пространством, или Т3-пространством, если Х есть Т1-пространство и для любого и любого замкнутого множества , такого, что , существует непрерывная функция f: , такая, что f(x)=0 и f(y)=1 для .
Определение 1.26. Топологическое пространство Х называется нормальным, или Т4-пространством, если для каждой пары непересекающихся замкнутых множеств А и В существуют непересекающиеся открытые множества U и V такие, что АU, BV.

ГЛАВА 2. Линейно упорядоченное пространство ординальных чисел.

§1.ВПОЛНЕ УПОРЯДОЧЕННЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА.
Рассмотрим вполне упорядоченные множества и их свойства.
Предложение 1.1. Всякое подмножество вполне упорядоченного множества само есть вполне упорядоченное множество (очевидно).
Предложение 1.2. Если f - изоморфизм вполне упорядоченного множества А в себя, то для любого элемента хА выполняется неравенство f (x)x. (1)
Доказательство.
Будем доказывать методом от противного и предположим, что в А есть элементы х, не удовлетворяющие неравенству (1). Тогда среди этих элементов есть наименьший, так как А является вполне упорядоченным. Обозначим его через х1 : f (x1)<x1. Обозначим f (x1) = x0 и перепишем неравенство: х0<х1. Так как f - изоморфизм, то выполняется неравенство: f(x0)<f (x1) = x0.
Таким образом, получили следующие неравенства: х0 < x1 и f (x0) < x0 . Эти неравенства противоречат определению элемента х1, как наименьшего из элементов х множества А, не удовлетворяющих условию f (x) < x. ¦
Определение 2.1. Начальным отрезком, отсекаемым элементом аА от линейно упорядоченного множества А, называется множество Аа = {x | x A, x < a}.
Предложение 1.3. Пусть А' - произвольное подмножество вполне упорядоченного множества А. Тогда множество А не изоморфно никакому отрезку множества А'.
Доказательство:
Будем доказывать методом от противного и предположим, что существует изоморфизм вполне упорядоченного множества А в некоторый отрезок Ах' подмножества А'А. Тогда f (x) Ax'. Следовательно, f (x) < x - противоречие с предложением 1.2. ¦
Следствие 1.4. Два различных отрезка вполне упорядоченного множества не могут быть изоморфны между собою.
Доказательство.
Пусть Ах и Ау - два различных отрезка вполне упорядоченного множества А. Так как Ах и Ау различны, а множество А - вполне упорядочено, то х и у сравнимы, при этом ху. Пусть для определённости x < y. Тогда Ах - отрезок множества Ау и по предложению 1.3 Ах и Ау не могут быть изоморфными. ¦
Предложение 1.5. Существует не более одного изоморфизма одного вполне упорядоченного множества на другое.
Доказательство.
Будем доказывать методом от противного и предположим, что f и g - два различных изоморфизма вполне упорядоченного множества А на вполне упорядоченное множество В. Так как f и g различны, то существует аА: b = f (a) b' = g (a). Пусть для определённости b < b'. При всяком изоморфизме f множества А на множество В отрезок Ах А переходит в отрезок Ву В, где у = f (х). Поэтому отрезок Аа А подобен отрезкам
Вb В и Вb' B, т. е. Bb изоморфен Aa и Аа изоморфен Вb'. Следовательно, отрезок Вb изоморфен отрезку Bb' , но это противоречит следствию 1.4. ¦
Определение 2.2. Если для элемента а А существует элемент а' =
= inf {x | a < x, x A}, то а' называется непосредственно следующим за а.
Предложение 1.6. Если А - вполне упорядоченное множество, то у каждого элемента множества А, кроме наибольшего, имеется непосредственно следующий за ним элемент.
Доказательство.
Возьмём некоторый элемент аА, пусть а не является наибольшим элементом. Рассмотрим множество {x | x A, x > а}. По предложению 1.1 оно имеет наименьший элемент а', который является точной нижней гранью рассматриваемого множества. Следовательно, а' следует за а. ¦
§2. КОНЕЧНЫЕ ЦЕПИ И ИХ ПОРЯДКОВЫЕ ТИПЫ.
Предложение 2.1. Множество из n элементов можно линейно упорядочить n! способами.
Доказательство.
Для доказательства достаточно применить формулу числа перестановок для n-элементного множества: Рn=n! ¦
Предложение 2.2. Любое конечное линейно упорядоченное множество является вполне упорядоченным множеством.
Доказательство.
Пусть есть множество А - конечное линейно упорядоченное множество. Надо доказать, что А является вполне упорядоченным, то есть любое его подмножество имеет наименьший элемент. Рассмотрим произвольное множество В, являющееся подмножеством множества А. Предположим, что оно не имеет наименьшего элемента. Возьмём какой-нибудь элемент множества В. Обозначим его через b1. Так как в В нет наименьшего элемента, то в нём есть элемент b2, такой, что b2 < b1. Элемент b2 не является наименьшим элементом в В, поэтому имеется элемент b3<b2. Повторяя это рассуждение, строим для каждого натурального n элемент bn+1 B, причём bn+1 < bn.
Таким образом, получили бесконечное множество {b1, b2, . . . ,bn, . . }, но это противоречит тому, что В - подмножество конечного множества А и, следовательно, само является конечным. ¦
Предложение 2.3. Любые две конечные цепи, состоящие из n элементов, изоморфны.
Доказательство.
пусть есть две конечные цепи из n элементов:
a1 < a2 <…< an,
b1 < b2 <…< bn.
Для каждого аi положим f (ai) = bi. Очевидно, что отображение f является изоморфизмом. ¦
Замечание: бесконечные линейно упорядоченные множества одинаковой мощности могут и не быть изоморфными. Например, множество натуральных чисел и множество целых чисел с естественными порядками. Мощности этих множеств равны, но они не являются изоморфными, так как в N есть наименьший элемент, а в Z наименьшего элемента нет.
Определение 2.3. Порядковым типом линейно упорядоченного множества А называется класс всех линейно упорядоченных множеств, изоморфных множеству А.
Будем считать, что порядковый тип пустого множества есть 0.
Обозначим через n порядковый тип n - элементного множества
Nn = {0, 1, 2,…, n - 1} с порядком 0 < 1 < 2 <…< n-1.
§3.ПОРЯДКОВЫЙ ТИП .
Определение 2.4. Множество натуральных чисел с естественным порядком и все изоморфные ему линейно упорядоченные множества называются множествами порядкового типа .
Предложение 3.1. Бесконечное линейно упорядоченное множество А имеет порядковый тип тогда и только тогда, когда оно удовлетворяет следующим условиям:
1) во множестве А имеется наименьший элемент a0;
2) для любого аА существует точная нижняя грань а' во множестве {x | a < x, x A};
3) для любого подмножества Х множества А из того, что а0Х и Х
содержит вместе с каждым своим элементом непосредственно следующий за ним элемент, следует, что Х = А.
Доказательство.
Пусть линейно упорядоченное множество А удовлетворяет условиям 1)- 3). Докажем, что А имеет порядковый тип , то есть А изоморфно множеству N.
Из условия (1) следует существование во множестве А наименьшего элемента а0.
Рассмотрим отображение f: N A, заданное таким образом: f (0) = a0,
f (n + 1) = (f (n))', где n = 0, 1, 2,… Существование (f (n))' для каждого n обеспечивается условием (2). Тогда вследствие условия (3) f(N)=A. Таким образом, f инъективно и сюръективно, следовательно, взаимно однозначно. Докажем, что f сохраняет порядок: возьмём n, m N, пусть для определённости n < m . Из условия (2) следует, что f (n) < (f (n))' f (m),
то есть f (n) < f (m). Следовательно, f сохраняет порядок.
Таким образом, f - взаимно однозначное отображение N A, сохраняющее порядок. Следовательно, множество А имеет порядковый тип .
Пусть есть бесконечное линейно упорядоченное множество А, имеющее порядковый тип . Множество N удовлетворяет условиям 1) - 3), а множество А изоморфно ему, поэтому и множество А удовлетворяет условиям 1) - 3). ¦
Определение 2.5. Порядковым типом * называется класс линейно упорядоченных множеств, эквивалентных множеству N с двойственным порядком: 1 > 2 > 3 >…
Предложение 3.2. упорядоченное множество является вполне упорядоченным тогда и т и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.