На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Исаак Ньютон

Информация:

Тип работы: реферат. Добавлен: 04.05.2012. Сдан: 2011. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
 
 
 
 
 
 
Реферат по КСЕ на тему: 

Исаак Ньютон 
 
 

 
 
 
 
 
 

   
 
 
 
 

Москва,2009

СОДЕРЖАНИЕ:

    Введение 2
    Вершины научного творчества Ньютона 3
      Сочинение «Анализ» Ньютона, 4
      Бином Ньютона 7
    2.2.1.Закон тяготения  Ньютона 8
    2.2.2.Законы  Механики Ньютона 10
    2.2.3.Кольца  Ньютона 12
    Метод Ньютона 12
      Система рефлектора Ньютона 13
    Список использованной литературы 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ньютон (Newton) Исаак (4.1.1643, Вулсторп, около Граптема, — 31.3.1727, Кенсингтон), английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного тяготения, разработавший (наряду с Г. Лейбницем) дифференциальное и интегральное исчисления, изобретатель зеркального телескопа и автор важнейших экспериментальных работ по оптике. 
 Ньютон  родился  в семье фермера; отец Ньютон  умер незадолго до рождения  сына. В 12 лет Ньютон начал учиться  в Грантемской школе, в 1661 поступил  в Тринити-колледж Кембриджского  университета в качестве субсайзера (так назывались бедные студенты, выполнявшие для заработка обязанности слуг в колледже), где его учителем был известный математик И. Барроу. Окончив университет, Ньютон в 1665 получил учёную степень бакалавра. В 1665—67, во время эпидемии чумы, находился в своей родной деревне Вулсторп; эти годы были наиболее продуктивными в научном творчестве Н. Здесь у него сложились в основном те идеи, которые привели его к созданию дифференциального и интегрального исчислений, к изобретению зеркального телескопа (собственноручно изготовленного им в 1668; открытию закона всемирного тяготения , здесь он провёл опыты над разложением света. В 1668 Ньютон была присвоена степень магистра, а в 1669 Барроу передал ему почётную люкасовскую физико-математическую кафедру, которую Ньютон занимал до 1701. В 1671 Ньютон построил второй зеркальный телескоп — больших размеров и лучшего качества. Демонстрация телескопа произвела сильное впечатление на современников, и вскоре после этого Н. был избран (в январе 1672) член Лондонского королевского общества (в 1703 стал его президентом). В 1687 он опубликовал свой грандиозный труд «Математические начала натуральной философии» (кратко —«Начала»). В 1695 получил должность смотрителя Монетного двора (этому, очевидно, способствовало то, что Ньютон изучал свойства металлов).  Ему было поручено руководство перечеканкой всей английской монеты. Ему удалось привести в порядок расстроенное монетное дело Англии, за что он получил в 1699 пожизненное высокооплачиваемое звание директора Монетного двора. В том же году  Ньютон избран иностранным членом Парижской АН. В 1705 за научные труды он возведён в дворянское достоинство. Похоронен  он был  в английском национальном пантеоне — Вестминстерском аббатстве. 
 Основные  вопросы механики, физики и математики, разрабатывавшиеся Ньютоном , были тесно связаны с научной проблематикой его времени. Оптикой Ньютон начал интересоваться ещё в студенческие годы, его исследования в этой области были связаны со стремлением устранить недостатки оптических приборов. В первой оптической работе «Новая теория света и цветов», доложенной им в Лондонском королевском обществе в 1672, Ньютон высказал свои взгляды о «телесности света» (корпускулярную гипотезу света). Эта работа вызвала бурную полемику, в которой противником корпускулярных взглядов Ньютона на природу света выступил Р. Гук (в то время господствовали волновые представления). Отвечая Гуку, он высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Эту гипотезу Н. развил затем в сочинении «Теория света и цветов», в котором он описал также опыт с кольцами Ньютона и установил периодичность света. При чтении этого сочинения на заседании Лондонского королевского общества Гук выступил с притязанием на приоритет, и раздражённый  Ньютон принял решение не публиковать оптических работ. Многолетние оптические исследования Ньютона были опубликованы им лишь в 1704 (через год после смерти Гука) в фундаментальном труде «Оптика». Принципиальный противник необоснованных и произвольных гипотез, он начинает «Оптику» словами: «Мое намерение в этой книге — не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами» (Ньютон И., Оптика..., М., 1954, с. 9). В «Оптике»  Ньютон описал проведённые им чрезвычайно тщательные эксперименты по обнаружению дисперсии света — разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости и показал, что дисперсия вызывает искажение в линзовых оптических системах — хроматическую аберрацию. Ошибочно считая, что устранить искажение, вызываемое ею, невозможно,  Ньютон сконструировал зеркальный телескоп. Наряду с опытами по дисперсии света Ньютон описал интерференцию света в тонких пластинках и изменение интерференционных цветов в зависимости от толщины пластинки в кольцах Ньютона. По существу он  первым измерил длину световой волны. Кроме того, он описал здесь свои опыты по дифракции света. 
 «Оптика»  завершается специальным приложением — «Вопросами», где Ньютон высказывает свои физические взгляды. В частности, здесь он излагает воззрения на строение вещества, в которых присутствует в неявном виде понятие не только атома, но и молекулы. Кроме того, Исаак Ньютон приходит к идее иерархического строения вещества: он допускает, что «частички тел» (атомы) разделены промежутками — пустым пространством, а сами состоят из более мелких частичек, также разделённых пустым пространством и состоящих из ещё более мелких частичек, и т.д. до твёрдых неделимых частичек. Он вновь рассматривает здесь гипотезу о том, что свет может представлять собой сочетание движения материальных частиц с распространением волн эфира. 
  Вершиной научного  творчества Ньютона являются «Начала», в которых Н. обобщил результаты, полученные его предшественниками (Г. Галилей, И. Кеплер, Р. Декарт, Х. Гюйгенс, Дж. Борелли, Гук, Э. Галлей и др.), и свои собственные исследования и впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон  дал определения исходных понятий — количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность Ньютон понимал как степень заполнения единицы объёма тела первичной материей. Ньютон впервые рассмотрел основной метод феноменологического описания любого физического воздействия через посредство силы. Определяя понятия пространства и времени, он отделял «абсолютное неподвижное пространство» от ограниченного подвижного пространства, называя «относительным», а равномерно текущее, абсолютное, истинное время, называя «длительностью», — от относительного, кажущегося времени, служащего в качестве меры «продолжительности». Эти понятия времени и пространства легли в основу классической механики. Затем Ньютон сформулировал свои 3 знаменитые «аксиомы, или законы движения»: закон инерции (открытый Галилеем, первый закон Ньютона ), закон пропорциональности количества движения силе (второй закон Ньютона и закон равенства действия и противодействия (третий закон Ньютона .). Из 2-го и 3-го законов он выводит закон сохранения количества движения для замкнутой системы. 
Ньютон рассмотрел движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола). Он изложил своё учение о всемирном тяготении, сделал заключение, что все планеты и кометы притягиваются к Солнцу, а спутники — к планетам с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел. он показал, что из закона всемирного тяготения вытекают законы Кеплера и важнейшие отступления от них. Так, он объяснил особенности движения Луны (вариацию, попятное движение узлов и т.д.), явление прецессии и сжатие Юпитера, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли. 
 В «Началах»  Ньютон исследовал движение тел  в сплошной среде (газе, жидкости) в зависимости от скорости их перемещения и привёл результаты своих экспериментов по изучению качания маятников в воздухе и жидкостях . Здесь же он рассмотрел скорость распространения звука в упругих средах. Он доказал посредством математического расчёта полную несостоятельность гипотезы Декарта, объяснявшего движение небесных тел с помощью представления о разнообразных вихрях в эфире, заполняющем Вселенную. Ньютон нашёл закон охлаждения нагретого тела. В этом же сочинении он уделил значительное внимание закону механического подобия, на основе которого развилась теория подобия.  
 Таким образом  , в «Началах» впервые дана  общая схема строгого математического  подхода к решению любой конкретной  задачи земной или небесной  механики. Дальнейшее применение  этих методов потребовало, однако, детальной разработки аналитической механики (Л. Эйлер, Ж. Л. Д'Аламбер, Ж. Л. Лагранж, У. Р. Гамильтон) и гидромеханики (Эйлер и Д. Бернулли). Последующее развитие физики выявило пределы применимости механики Ньютона. 
 Задачи естествознания, поставленные Ньютоном , потребовали  разработки принципиально новых  математических методов. Математика для него была главным орудием в физических изысканиях; он подчёркивал, что понятия математики заимствуются извне и возникают как абстракция явлений и процессов физического мира, что по существу математика является частью естествознания. 
 Разработка дифференциального исчисления и интегрального исчисления явилась важной вехой в развитии математики. Большое значение имели также работы Ньютона по алгебре, интерполированию и геометрии. Основные идеи метода флюксий сложились у  Ньютона под влиянием трудов П. Ферма, Дж. Валлиса и его учителя И. Барроу в 1665—66. К этому времени относится открытие  Ньютона взаимно обратного характера операций дифференцирования и интегрирования и фундаментальные открытия в области бесконечных рядов, в частности индуктивное обобщение т. н. теоремы о Ньютона биноме на случай любого действительного показателя. Вскоре были написаны и основные сочинения Ньютона по анализу, изданные, однако, значительно позднее. Некоторые математические открытия он  получили известность уже в 70-е гг. благодаря его рукописям и переписке. 
 В понятиях  и терминологии метода флюксий  с полной отчётливостью отразилась глубокая связь математических и механических исследований Исаака Ньютона. Понятие непрерывной математической величины Ньютон  вводит как абстракцию от различных видов непрерывного механического движения. Линии производятся движением точек, поверхности — движением линий, тела — поверхностей, углы — вращением сторон и т.д. Переменные величины он назвал флюентами (текущими величинами, от лат. fluo — теку). Общим аргументом текущих величин — флюент — является у Ньютона  «абсолютное время», к которому отнесены прочие, зависимые переменные. Скорости изменения флюент он  назвал флюксиями, а необходимые для вычисления флюксий бесконечно малые изменения флюент — «моментами» (у Лейбница они назывались дифференциалами). Таким образом, Ньютон  положил в основу понятия флюксий (производной) и флюенты (первообразной, или неопределённого интеграла). 
 В сочинении  «Анализ при помощи уравнений  с бесконечным числом членов»  (1669, опубликовано 1711)  Ньютон вычислил  производную и интеграл любой  степенной функции. Различные рациональные, дробно-рациональные, иррациональные и некоторые трансцендентные функции (логарифмическую, показательную, синус, косинус, арксинус) Ньютон  выражал с помощью бесконечных степенных рядов. В этом же труде он изложил метод численного решения алгебраических уравнений, а также метод для нахождения разложения неявных функций в ряд по дробным степеням аргумента. Метод вычисления и изучения функций их приближением бесконечными рядами приобрёл огромное значение для всего анализа и его приложений. 
 Наиболее  полное изложение дифференциального  и интегрального исчислений содержится  в «Методе флюксий...» (1670—1671, опубл. 1736). Здесь  Ньютон формулирует  две основные взаимно-обратные  задачи анализа: 1) определение скорости  движения в данный момент времени по известному пути, или определение соотношения между флюксиями по данному соотношению между флюентами (задача дифференцирования), и 2) определение пройденного за данное время пути по известной скорости движения, или определение соотношения между флюентами по данному соотношению между флюксиями (задача интегрирования дифференциального уравнения и, в частности, отыскания первообразных). Метод флюксий применяется здесь к большому числу геометрических вопросов (задачи на касательные, кривизну, экстремумы, квадратуры, спрямления и др.); здесь же выражается в элементарных функциях ряд интегралов от функций, содержащих квадратный корень из квадратичного трёхчлена. Большое внимание уделено в «Методе флюксий» интегрированию обыкновенных дифференциальных уравнений, причём основную роль играет представление решения в виде бесконечного степенного ряда. Ньютону принадлежит также решение некоторых задач вариационного исчисления.  
 Во введении  к «Рассуждению о квадратуре  кривых» (основной текст 1665—66, введение и окончательный вариант 1670, опубликован 1704) и в «Началах» он намечает программу построения метода флюксий на основе учения о пределе, о «последних отношениях исчезающих величин» или «первых отношениях зарождающихся величин», не давая, впрочем, формального определения предела и рассматривая его как первоначальное. Учение Н. о пределе через ряд посредствующих звеньев (Ж. Л. Д'Аламбер, Л. Эйлер) получило глубокое развитие в математике 19 в. (О. Л. Коши и др.). 
 В «Методе разностей» (опубликован 1711) Исаак Ньютон  дал решение задачи о проведении через n + 1 данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка и предложил интерполяционную формулу, а в «Началах» дал теорию конических сечений. В «Перечислении кривых третьего порядка» (опубликована 1704) Ньютона приводится классификация этих кривых, сообщаются понятия диаметра и центра, указываются способы построения кривых 2-го и 3-го порядка по различным условиям. Этот труд сыграл большую роль в развитии аналитической и отчасти проективной геометрии. Во «Всеобщей арифметике» (опубликована в 1707 по лекциям, читанным в 70-е гг. 17 в.) содержатся важные теоремы о симметрических функциях корней алгебраических уравнений, об отделении корней, о приводимости уравнений и др. Алгебра окончательно освобождается у  Ньютона от геометрической формы, и его определение числа не как собрания единиц, а как отношения длины любого отрезка к отрезку, принятому за единицу, явилось важным этапом в развитии учения о действительном числе. 
 Созданная   Ньютоном теория движения небесных  тел, основанная на законе всемирного  тяготения, была признана крупнейшими  английским учёными того времени  и резко отрицательно встречена  на европейском континенте. Противниками его  взглядов (в частности, в вопросе о тяготении) были картезианцы, воззрения которых господствовали в Европе (в особенности во Франции) в 1-й половине 18 в. Убедительным доводом в пользу теории Ньютона явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов вместо выпуклостей, ожидавшихся по учению Декарта. Исключительную роль в укреплении авторитета  его теории  сыграла работа А. К. Клеро по учёту возмущающего действия Юпитера и Сатурна на движение кометы Галлея. Успехи теории Ньютон  в решении задач небесной механики увенчались открытием планеты Нептун (1846), основанном на расчётах возмущений орбиты Юпитера (У. Леверье и Дж. Адамс). 
 Вопрос о  природе тяготения во времена  Ньютона сводился в сущности  к проблеме взаимодействия, т.  е. наличия или отсутствия материального  посредника в явлении взаимного  притяжения масс. Не признавая  картезианских воззрений на природу тяготения, Ньютон., однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований. После его смерти  возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого была абсолютизация и развитие его высказывания .: «гипотез не измышляю» («hypotheses non fingo») и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез. 
 Могучий аппарат  ньютоновской механики, его универсальность  и способность объяснить и  описать широчайший круг явлений  природы, особенно астрономических,  оказали огромное влияние на  многие области физики и химии.  Ньютон писал, что было бы  желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели. Влияние его взглядов на дальнейшее развитие физики огромно. «Ньютон заставил физику мыслить по-своему, “классически”, как мы выражаемся теперь... Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе» (Вавилов С. И., Исаак Ньютон, 1961, с. 194, 196). 
 Материалистические  естественнонаучные воззрения совмещались у  Ньютона с религиозностью. К концу жизни он написал сочинение о пророке Данииле и толкование Апокалипсиса. Однако он  четко отделял науку от религии. «Ньютон оставил ему (богу) ещё “первый толчок”, но запретил всякое дальнейшее вмешательство в свою солнечную систему» (Ф. Энгельс, Диалектика природы, 1969, с. 171). 
 На русский  язык переведены все основные  работы Ньютона.; большая заслуга  в этом принадлежит А. Н. Крылову и С. И. Вавилову
Соч.: Opera quae extant omnia. Commentariis illustravit S. Horsley, v. 1—5, L., 1779—85; в рус. пер.— Математические начала натуральной философии, с примечаниями и пояснениями А. Н. Крылова, в кн.: Крылов А. Н., Собр. трудов, т. 7, М.—Л., 1936; Лекции по оптике, пер. С. И. Вавилова, [М.], 1946; Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света, пер. и примечания С. И, Вавилова, 2 изд., М., 1954; Математические работы, пер. с лат. Д. Д. Мордухай-Болтовского, М.—Л., 1937; Всеобщая арифметика или книга об арифметическом синтезе и анализе, пер. А. П. Юшкевича, М.—Л., 1948. 
Бином Ньютона , название формулы, выражающей любую целую положительную степень суммы двух слагаемых (бинома, двучлена) через степени этих слагаемых. 
 Частными случаями бинома Ньютона при n = 2 и n = 3 являются известные формулы для квадрата и куба суммы а и b: (а + b)2 = а2 + 2ab + b2, (а + b)3 = а3 + 3a2b + 3ab2 + b3; при n = 4 получают (а + b)4 = a4+ 4a3b + 6a2b2 + 4ab3 + b4 и т.д. 
 Коэффициенты  формулы (или разложения) бинома Ньютона называют биномиальными коэффициентами; коэффициент при an-kbk Последнее обозначение связано с комбинаторикой: есть число сочетаний из n различных между собой элементов, взятых по k. Биномиальные коэффициенты обладают многими замечательными свойствами: все они целые положительные числа; крайние коэффициенты равны единице; коэффициенты членов, равноотстоящих от концов, одинаковы; коэффициенты возрастают от краев к середине; сумма всех коэффициентов равна 2n. Особенно важное значение имеет следующее свойство: сумма двух соседних коэффициентов в разложении (а + b) n равна определённому коэффициенту в разложении (а + b) n+1; например, суммы 1+3, 3+3, 3+1 соседних коэффициентов в формуле для (а + b)3 дают коэффициенты 4, 6 и 4 в формуле для (а + b)4. Вообще:  
  
 Пользуясь  этим свойством, можно, отправляясь  от известных коэффициентов для  (а + b)1, получить путём сложения биномиальные коэффициенты для любого n. Выкладки располагают в виде таблицы .  Формула Н. б. для целых положительных показателей была известна задолго до И. Ньютона; но им была указана (1676) возможность распространения этого разложения и на случай дробного или отрицательного показателя (хотя строгое обоснование этого было дано лишь Н. Абелем, 1826). В этом более общем случае формула Н. б. начинается так же, как формула (1); коэффициентом при an-kbk служит выражение, которое, в случае целого положительного п, обращается в нуль при всяком k > п, вследствие чего формула содержит лишь конечное число членов. В случае же дробного или отрицательного n все биномиальные коэффициенты отличны от нуля, и правая часть формулы содержит бесконечный ряд членов (биномиальный ряд). Если ebe < eаe, то этот ряд сходится, т. е., взяв достаточно большое число его членов, можно получить величину, сколь угодно близкую к (а + b) n .Формула Н Ньютона играет важную роль во многих областях математики (алгебре, теории чисел и др.).   

Закон тяготения Ньютона , закон всемирного тяготения, один из универсальных законов природы; согласно закону тяготения Ньютона: все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от физических и химических свойств тел, от состояния их движения, от свойств среды, где находятся тела. На Земле тяготение проявляется прежде всего в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas — тяжесть), эквивалентный термину «тяготение». 
Закон тяготения Ньютона , открытый  им в 17 ,формулируется следующим образом. Каждые две материальные частицы притягивают друг друга с силой F, прямо пропорциональной их массам m1 и m2 и обратно пропорциональной квадрату расстояния r между ними:сила F направлена вдоль прямой, соединяющей эти частицы. Коэффициент пропорциональности G — постоянная величина, наз. гравитационной постоянной в системе СГС G » 6,7·10-8 дин?см?г-2. Под «частицами» здесь подразумеваются тела, размеры которых пренебрежимо малы по сравнению с расстояниями между ними, т. е. материальные точки. Закон тяготения Ньютона можно интерпретировать иначе, полагая, что каждая материальная точка с массой m1 создаёт вокруг себя поле тяготения (гравитационное поле), в котором любая другая свободная материальная точка, находящаяся на расстоянии r от центра поля, приобретает ускорение и направленное к центру поля.
Силы тяготения (и гравитационные поля) отдельных интегральных частиц обладают свойством аддитивности, т. е. сила, действующая на некоторую частицу со стороны нескольких др. частиц, равна геометрической сумме сил, действующих со стороны каждой частицы. Из этого следует, что тяготение между реальными материальными телами, с учётом их размеров, формы и распределения плотности вещества, можно определить, вычислив сумму сил тяготения (учитывающую направление составляющих сил) отдельных малых частиц, на которые можно мысленно разбить тела. Таким путём установлено, что шарообразное тело (однородное или со сферическим распределением плотности вещества) притягивает точно так же, как материальная точка, если расстояние r измеряется от центра шара. 
 В основном силы тяготения определяют характер движения небесных тел в космическом пространстве. Именно при изучении движения планет и их спутников был открыт и закон тяготения Ньютона впоследствии строго обоснован. В начале 17 в. И. Кеплером были установлены эмпирическим путём основные закономерности движения планет (законы Кемплера). Исходя из них, современники Ньютона (французский астроном И. Бульо, итальянский физик Дж. Борелли, английский физик Р. Гук) высказывали соображения, что движение планет может быть объяснено действием силы, которая притягивает каждую планету к Солнцу и которая убывает пропорционально квадрату расстояния от Солнца. Однако только Ньютон в «Математических началах натуральной философии» (1687) впервые это строго доказал, опираясь на свои первые два закона механики и на созданные им новые математические методы, составившие основу дифференциального и интегрального исчисления. Ньютон доказал, что движение каждой планеты должно подчиняться первым двум законам Кеплера именно в том случае, если они движутся под действием силы тяготения Солнца .Далее Ньютон показал, что движение Луны может быть приближённо объяснено с помощью аналогичного силового поля Земли и что сила тяжести на Земле есть результат воздействия этого же силового поля на материальные тела вблизи поверхности Земли. На основании 3-го закона механики Ньютон заключил, что притяжение есть взаимное свойство, и пришёл к формулировке своего закона тяготения для любых материальных частиц. Выведенный по эмпирическим данным, на основании результатов наблюдений, с неизбежностью приближённых, Закон тяготения Ньютона представлял собой вначале рабочую гипотезу. В дальнейшем потребовалась колоссальная работа в течение более чем двухсот лет для строгого обоснования этого закона. 
Закон тяготения Ньютона явился основой небесной механики. В течение 17—19 вв. одной из основных задач небесной механики было доказательство того, что гравитационное взаимодействие по закону Ньютона точно объясняет наблюдаемые движения небесных тел в Солнечной системе. Сам Ньютон показал, что взаимное притяжение между Землёй, Луной и Солнцем объясняет довольно точно ряд наблюдавшихся с давних пор особенностей в движении Луны (т. н. вариации, движение узлов, движение перигея, колебания наклона лунной орбиты), что Земля из-за своего вращения и вследствие действия сил тяготения между частицами вещества Земли должна быть сплюснута у полюсов; действием сил тяготения Ньютон объяснил также и явление прецессии земной оси, приливы и отливы и т.д. Одним из наиболее ярких в истории астрономии подтверждений справедливости закона тяготения Ньютона явилось открытие в 1845—46 планеты Нептун — результат предварительных теоретических расчётов, предсказавших положение планеты. Современные теории движения Земли, Луны и планет, основанные на законе  тяготения Ньютона отражают наблюдаемые движения этих тел во всех деталях, за исключением нескольких эффектов (движения перигелиев Меркурия, Венеры, Марса), которые находят своё объяснение в релятивистской небесной механике, основанной на теории тяготения Эйнштейна. 
 Гравитационное  взаимодействие в соответствии  с законом тяготения Ньютона играет главную роль в движении звёздных систем типа двойных и кратных звёзд, внутри звёздных скоплений и галактик. Однако гравитационные поля внутри звёздных скоплений и галактик имеют очень сложный характер, изучены ещё недостаточно, вследствие чего движения внутри них изучают методами, отличными от методов небесной механики . Гравитационное взаимодействие играет также существенную роль во всех космических процессах, в которых участвуют скопления больших масс вещества. Закон тяготения Ньютона является основой при изучении движения искусственных небесных тел, в частности искусственных спутников Земли и Луны, космических зондов. На законе тяготения Ньютона опирается гравиметрия. Силы притяжения между обычными макроскопическими материальными телами на Земле могут быть обнаружены и измерены, но не играют сколько-нибудь заметной практической роли. В микромире силы притяжения ничтожно малы по сравнению с внутримолекулярными и внутриядерными силами. 
 Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. Трудности, связанные с этим, были устранены лишь в теории тяготения Эйнштейна, представляющей собой новый этап в познании объективных законов природы.  
 

Законы механики Ньютона, три закона, лежащие в основе т. н. классической механики
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.