Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 10.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


    Содержание
    Введение
    1. Линейные системы
    1.1 Предварительные определения и обозначения
    1.2 Линейные однородные системы
    1.3 Неоднородные линейные системы
    1.4 Линейные системы с постоянными коэффициентами
    1.5 Линейные системы с периодическими коэффициентами
    2. Линейные дифференциальные уравнения
    2.1 Линейные дифференциальные уравнения порядка n
    2.2 Линейные уравнения с аналитическими коэффициентами
    2.3 Асимптотическое поведение решений некоторых линейных систем
    3. Решение задач
    Заключение
    Список литературы

Введение

При изучении физических явлений часто не удается непосредственно найти законы, связывающие физические величины, но сравнительно легко устанавливается зависимость между теми же величинами, их производными или дифференциалами.

Таким образом, большинство физических явлений описывается на языке дифференциальных уравнений, содержащих неизвестные функции под знаком производной или дифференциала.

В работе рассматриваются понятия простейших дифференциальных уравнений, а также линейных дифференциальных уравнений произвольного порядка и систем таких уравнений. Особое внимание уделяется изучению линейных дифференциальных уравнений с постоянными коэффициентами и систем линейных уравнений.

Решением дифференциального уравнения называется n раз дифференцируемая функция , удовлетворяющая уравнению во всех точках своей области определения.

Обычно существует целое множество таких функций, и для выбора одного из них требуется наложить на него дополнительные условие: например, потребовать, чтобы решение принимало в данной точке данное значение.

Задача нахождения решения обыкновенного дифференциального уравнения или системы обыкновенных дифференциальных уравнений, удовлетворяющего некоторым начальным условиям, называется задачей Коши.

Основные задачи и результаты теории дифференциальных уравнений: существование и единственность решения различных задач для обыкновенных дифференциальных уравнений, методы решения простейших обыкновенных дифференциальных уравнений , качественное исследование решений обыкновенных дифференциальных уравнений без нахождения их явного вида.

Цель дипломной работы - изучить понятие линейных дифференциальных уравнений.

В связи с поставленной целью необходимо выполнить следующие задачи:

1) Рассмотреть понятие линейных систем;

2) Изучить линейные дифференциальные уравнения различных порядков, в том числе с аналитическими коэффициентами;

3) Решить предложенные практические задания.

1. Линейные системы

1.1 Предварительные определения и обозначения

Пусть А = (aij) - квадратная матрица порядка n, где aij - комплексные числа. Определим норму А следующим образом:

. (1.1)

Если n-мерный вектор х представлять как матрицу с n строками и одним столбцом, то норма вектора совпадает с нормой x, определенной по формуле (1). Легко видеть, что норма обладает следующими свойствами:

(I) |A+B| |A|+|B|,

(II) |AB| |A|*|B|,

(III) |Ax| |A|*|x|,

где А и В - матрицы, х - n-мерный вектор.

По определению, расстояние между двумя матрицами А и В равно |A-B|, и это расстояние удовлетворяет обычным свойствам метрики.

Нулевая матрица будет обозначаться через О, единичная - через Е. В случае опасности смешения размерностей эти квадратные матрицы порядка n будут обозначаться соответственно через Оn и Еn.

Заметим, что | Оn | = 0 и | Еn | = n, а не 1.

Комплексно сопряженной матрицей для А = (aij) называется матрица , где - комплексно сопряженные числа для aij. Транспонированная матрица обозначается через и определяется так: . Сопряженная матрица для А определяется так: . Заметим, что |A*|=||=||=|A|. Далее, (АВ)*=В*А*. Определитель матрицы А обозначается как det А.

Если det А = 0, то матрица А называется особой. Не особая матрица имеет обратную матрицу А-1, которая удовлетворяет соотношениям

А А-1 = А-1А = Е.

Многочлен det (лЕ-А) степени n от л называется характеристическим многочленом для матрицы А, а его корни - характеристическими корнями А. Если эти корни обозначены лi (i = 1, …, n), то

det (лЕ-А) =

Две квадратные матрицы А и В порядка n называются подобными, если существует Неособая квадратная матрица Р порядка n, такая что

В = РАР-1.

Если А и В подобны, то они имеют один и тот же характеристический многочлен, ибо

det (лЕ-В) = det (Р(лЕ-А)Р-1)= det Р* det (лЕ-А)* det Р-1= det (лЕ-А).

В частности, коэффициенты многочлена det (лЕ-А) при степенях л инвариантны относительно преобразования подобия. Два наиболее важных инварианта - det А и sp A - определитель и след А соответственно.

Приведем следующий фундаментальный результат о канонической форме матрицы.

Теорема 1.1 Каждая квадратная матрица А порядка n и подобная матрица вида

где J0 - диагональная матрица с элементами л1, л2,…, лq и

(i = 1, …, s).

Здесь лj , j = 1, …, q+s, - характеристические корни А, не обязательно различные. Если лj - простой корень, то он встречается в J0 и поэтому, если все корни различны, А подобна диагональной матрице

Из теоремы 1.1 непосредственно следует, что

det А = , sp A =

где произведение и сумма распространены на все корни, причем каждый корень считается столько раз, каков а его кратность. Матрицы Ji имеют вид

Ji = лq+iЕri+Zi ,

где Ji - квадратная матрица порядка ri и

Матрицы Ji можно представить также в виде лq+iЕri+гZi, где г - любая постоянная, отличная от нуля.

Последовательность матриц {Аm} имеет своим пределом А, если для любого е > 0 существует такое целое число N, что при p, q > N

|Aq - Ap| <е.

Очевидно, что последовательность {Аm} сходится в том и только в том случае, когда сходится каждая из последовательностей компонент, а отсюда следует, что {Аm} сходится в том и только в том случае, когда существует предельная матрица, к которой и сходится эта последовательность.

Бесконечный ряд

называется сходящимся, если сходится последовательность частных сумм, а суммой ряда называется предельная матрица для частных сумм. Важное значение при изучении линейных уравнений имеет специальный ряд, который называется экспонентной матрицей А, а именно:

(1.2)

где Аm есть m-я степень А. Ряд, определяющий еА, сходится для всех А, июо для любых положительных целых p и q

а последнее выражение есть разность Коши для ряда еА, сходящегося для всех конечных |A|. Далее,

А|(n-1) + е|А|. (1.3)

Для матриц, вообще говоря, равенство еА+В = еА еВ неверно. Это равенство верно, если А и В коммутируют. Далее будет показано, что

det еА = еspА, (1.4)

и поэтому еА есть неособая матрица для всех А. Так как -А коммутирует с А, то е = (еА)-1.

Каждая матрица А удовлетворяет своему характеристическому уравнению det (лЕ-А) = 0, и это замечание часто бывает полезно для эффективного вычисления еА.

Пусть В - неособая матрица. Покажем, что существует матрица А (называемая логарифмом В), такая, что еА = В. В самом деле, если в имеет каноническую форму J теоремы 1, то А, очевидно, можно представить в виде

при условии, что еАi = Jj, j = 0, 1, …, s. Легко также проверить, что А0 можно представить в виде

Далее,

где Zj - нильпотентная матрица, определенная в теореме 1.1. так как высшие степени Zj равны нулю, то ряд

содержит лишь конечное число членов и поэтому сходится. Положим, по определению, сумму этого ряда, который на самом деле является многочленом от, равной

Таким образом,

есть многочлен от . С другой стороны. Из тождества

(|x| < 1)

следует после приведения справа подобных членов, коэффициенты при хk, k2, равны нулю, а коэффициент при х равен единице. Отсюда следует тот же результат для F, и поэтому

Отсюда легко получаем, что Аj можно представить в виде

Пользуясь тем, что для каждой матрицы М

(PMP-1)k = PM k P-1 (k = 1, 2, …),

нетрудно видеть, что

Отсюда следует, что результат, полученный для канонической матрицы В, переносится на произвольную неособую матрицу В. В самом деле, если J = eA и B = PJP-1, то В = , где = PАP-1. естественно, что матрица А не единственна.

Если Ф - произвольная квадратная матрица порядка n из функций, определенная на действительном i-интревале I (элементы матрицы могут быть действительными или комплексными функциями), то Ф называется непрерывной, дифференцируемой ли аналитической на I, если все элементы Ф соответственно непрерывны, дифференцируемы или аналитичны на I. Если Ф на I дифференцируема, то через обозначается произвольная матрица. Заметим, что если матрицы Ф, Ш дифференцируемы, то

(1.5)

и, вообще говоря, .

Если в точке t производная матрица (t) существует и матрица Ф - неособая, то матрица Ф-1 в точке t дифференцируема. Это следует из равенства

где , а - алгебраические дополнения элементов . Из равенств (1.5) и Ф Ф-1=Е следует, что

(1.6)

Если матрица А на t-интервале I непрерывна и Ф удовлетворяет уравнению (t) = А(t)Ф(t), то

(1.7)

а в интегральной форме

(1.8)

1.2 Линейные однородные системы

Пусть А - непрерывная квадратная матрица порядка n, элементами которой служат непрерывные комплексные функции, определенные на t-интервале I. Линейная система

(ЛО)

Называется линейной однородной системой порядка n. Для любого о и для фI существует единственное решение ц системы (ЛО) на интервале I, удовлетворяющее условию ц(ф) = о. Замечание: если каждый элемент матрицы А измерим на I и

, (*)

где m интегрируема по Лебегу на I, то существует единственное решение ц системы (ЛО), удовлетворяющее условию ц(ф) = о. В дальнейшем будем полагать, что для А выполняется по крайней мере условие (*).

Нулевая вектор-функция на I является решением системы (ЛО). Это решение называется тривиальным. Если решение системы (ЛО) равно нулю для некоторого , то в силу теоремы единственности оно равно нулю тождественно на I.

Теорема 2.1. Множество всех решений системы (ЛО) на интервале I образует n-мерное векторное пространство над полем комплексных чисел.

Доказательство. Если ц1 и ц2 - решения (ЛО) и с1 , с2 - комплексные числа, то с1ц1 + с2ц2 также является решением (ЛО). Это показывает, что решения образуют векторное пространство.

Чтобы доказать, что это пространство n-мерно, следует показать, что существует n линейно зависимых решений ц1 , ц2 , …, цn , таких, что каждое другое решение системы (ЛО) есть линейная комбинация (с комплексными коэффициентами) этих цi . Пусть оi , i=1, 2, …, n - линейно независимые векторы n-мерного х-пространства. Например, за оi можно взять вектор со всеми компонентами, равными нулю, кроме i-й, которая равна 1. Тогда, по теореме существования, если , то существуют решения цi, i=1, 2, …, n, системы (ЛО), для которых цi(ф) = оi . Покажем, что эти решения удовлетворяют поставленному выше условию.

Если бы решения цi были линейно зависимы, то существовали бы n комплексных чисел , не равных одновременно нулю и таких, что

.

Отсюда следует равенство

противоречащее предположению о том, что векторы оi линейно независимы.

Если ц - некоторое решение (ЛО) на I, такое, что ц(ф)=о , то можно найти (единственным образом определенные) постоянные сi , удовлетворяющие равенству

,

ибо векторы оi образуют базис n-мерного х-пространства. Поэтому функция

есть решение (ЛО), принимающее при t = ф значение о, и, следовательно, в силу теоремы единственности

Итак, каждое решение ц есть (единственная) линейная комбинация цi и теорема 2.1 полностью доказана.

Всякое множество ц1 , ц2 , …, цn линейно зависимых решений системы (ЛО) называется базисом или фундаментальным множеством решений системы (ЛО).

Если Ф - матрица, n столбцов которой являются n линейно независимыми решениями (ЛО) на I, то Ф называется фундаментальной матрицей системы (ЛО). Очевидно, Ф удовлетворяет матричному уравнению

. (2.1)

Под матричным дифференциальным уравнением, соответствующим системе (ЛО) на I, подразумевается задача отыскания квадратной матрицы Ф порядка n, столбцы которой являются решениями системы (ЛО) на I. Эта задача обозначается так:

. (2.2)

Матрица Ф называется решением задачи (2.2) на I, и Ф удовлетворяет уравнению (2.1). Из теоремы 2.1. следует, что зная фундаментальную матрицу системы (ЛО), которая является, разумеется, частным решением уравнения (2.2), мы будем знать полную систему решений системы (ЛО).

Теорема 2.2. Для того, чтобы решение-матрица уравнения (2.2) была фундаментальной матрицей, необходимо и достаточно, чтобы det Ф(t) 0 для .

Замечание. Если det Ф(t) 0 для некоторого , то в силу (1.8) det Ф(t) 0 для всех t.

Доказательство теоремы 2.2. Пусть Ф - фундаментальная матрица, столбцами которой являются векторы цj , и пусть ц - некоторое нетривиальное решение системы (ЛО). В силу теоремы 2.1 существуют единственным образом определенные постоянные с1 , с2 , …, сn , не равные все нулю и такие, что

или, выражая при помощи матрицы Ф,

где с - вектор-столбец с элементами с1 , с2 , …, сn . Это соотношение при каждом есть система n линейных уравнений с неизвестными с1 , с2 , …, сn , имеющая единственное решение для каждого ц(ф). Поэтому det Ф(ф) 0 и, по сделанному выше замечанию, det Ф(t) 0 для каждого . Заметим, что это доказывает линейную независимость векторов-столбцов фундаментальной матрицы для каждого .

Наоборот, пусть Ф - матрица-решение уравнения (2.2) и пусть det Ф(t) 0 для каждого . Таким образом, векторы-столбцы матрицы Ф линейно независимы для каждого .

Матрица из векторов-столбцов может иметь определитель, тождественно равный нулю на интервале I, даже при линейно независимых векторах.

Например, пусть

для каждого действительного интервала I. Содержание теоремы 2.2 состоит в том, что этого не может случиться для векторов, которые являются решениями системы (ЛО).

Теорема 2.3. Если Ф - фундаментальная матрица для системы (ЛО) и С - (комплексная) постоянная неособая матрица, то ФС также является фундаментальной матрицей системы (ЛО). Каждая фундаментальная матрица системы (ЛО) может быть представлена в такой форме при помощи некоторой неособой матрицы С.

Доказательство. Из (2.1), если Ф - фундаментальная матрица, вытекает, что

,

Или

и, следовательно, ФС есть матрица-решение уравнения (2.2). Так как

det (ФС)=( det Ф)( det С) 0,

то ФС - фундаментальная матрица.

Наоборот, если Ф1 и Ф2 - две фундаментальные матрицы , то Ф2 = Ф1С, где С - некоторая постоянная неособая матрица. Для доказательства этого положим Ф1-1Ф2 = Ш(t). Тогда Ф2 = Ф1Ш. Дифференцируя это равенство, получим, что . Отсюда и из (2.1) следует, что , или . Поэтому и, следовательно, матрица ш = С постоянна. Она неособая, так как этим свойством обладают Ф1 и Ф2.

Замечания. Если предполагать, что Ф2 - решение, то матрица С может быть особой.

Заметим, что если Ф - фундаментальная матрица системы (ЛО) и С - постоянная неособая матрица, то СФ, вообще говоря, не является фундаментальной матрицей.

Две различные однородные системы не могут иметь одну и ту же фундаментальную матрицу, ибо из уравнения (ЛО) следует, что Поэтому матрица Ф определяет матрицу А однозначно, хотя обратное утверждение и неверно.

Сопряженные системы. Если Ф - фундаментальная матрица для системы (ЛО), то

или, переходя к сопряженным матрицам,

Поэтому - фундаментальная матрица для сопряженной системы (ЛО) и матричное уравнение

. (2.3)

Система (2.3) называется сопряженной для системы (ЛО) и матричное уравнение

(2.4)

называется сопряженным для уравнения (2.2.). Это соответствие симметрично, ибо (ЛО) и (2.2) сопряжены (2.3) и (2.4) соответственно.

Теорема 2.4. Если Ф - фундаментальная матрица для системы (ЛО), то Ш есть фундаментальная матрица для сопряженной системы (2.3) в том и только в том случае, когда

(2.5)

где С - постоянная неособая матрица.

Доказательство. Если Ф - фундаментальная матрица для системы (ЛО) и Ш есть фундаментальная матрица системы (2.3), то так как - фундаментальная матрица частного вида уравнения (2.3),

где D - некоторая постоянная неособая матрица (теорема 2.3). Поэтому

и можно принять С = D*.

Наоборот, если Ф - фундаментальная матрица для сопряженной системы (ЛО) и удовлетворяет (2.5), то или и, следовательно, в силу теоремы 2.3 Ш - фундаментальная матрица сопряженной системы (2.3).

Если А = - А*, то , будучи фундаментальной матрицей для системы (2.3), является также фундаментальной матрицей для системы (ЛО). Поэтому в силу теоремы 2.3 или

(2.6)

где С - постоянная неособая матрица. Из уравнения (2.6), в частности, следует, что эвклидова длина каждого вектора-решения системы (ЛО) постоянна.

Понижение порядка однородной системы. Если известно m (0<m<n) линейно зависимых решений системы (ЛО), то можно понизить порядок системы на m единиц, и следовательно, дело сведется к решению линейной системы порядка n-m.

Предположим, что ц1 , ц2 , …, цm - m линейно независимых векторов, которые являются решениями системы (ЛО) на интервале I. Пусть вектор цj имеет компоненты цij (i = 1, …, n). Тогда ранг прямоугольной матрицы с элементами цij (i = 1, …, n; j = 1, …, m) для каждого равен m, так как ее столбцы линейно независимы. Это означает, что для каждого в этой матрице найдется отличный от нуля определитель порядка m. Выберем некоторое и предположим для определенности, что в точке t0 отличен от нуля определитель матрицы Фm с элементами цij (i = 1, …, m; j = 1, …, m). Тогда в силу непрерывной зависимости определителя от его элементов цij и непрерывности функций цij в окрестности t0 получим, что det Фm(t) 0 для t из некоторого интервала , содержащего t0. Пусть - один из таких интервалов; процесс понижения проведем для . (Идея этого процесса является модификацией метода вариации произвольных постоянных.)

Пусть матрица U имеет своими первыми m столбцами векторы ц1 , ц2 , …, цm и своими n-m столбцами - векторы еm+1, …, en, где ej - вектор-столбец со всеми нулевыми элементами, кроме j-го, который равен 1. Очевидно, что U - неособая матрица на . Сделаем в (ЛО) подстановку

x = Uy. (2.7)

Заметим, что решениям х = цj (j = 1, …, m) при подстановке (2.7) соответствуют решения y = ej (j = 1, …, m). Поэтому подстановку (2.7) можно рассматривать как систему относительно y, которая должна иметь решения ej (j = 1, …, m).

Подставляя (2.7) в систему (ЛО), получаем

или в координатах,

(i = 1, …, m),

(i = m+1, …, n).

Выражая то обстоятельство, что векторы цj с компонентами цij являются решениями системы (ЛО), получаем

(i = 1, …, n; j = 1, …, m),

откуда следует, что

(i = 1, …, m),

(i = m+1, …, n). (2.8)

Так как det Фm 0, то из первых m уравнений (2.8) можно выразить производные (i = 1, …, m) через цij , aik и yk (k = m+1, …, n), и затем эти значения подставить в остальные формулы (2.8). Мы получим совокупность уравнений первого порядка, которым удовлетворяют функции yi (i = m+1, …, n) вида

(i = m+1, …, n), (2.9)

т.е. линейную систему порядка n-m.

Рассуждая в обратном порядке, предположим, что , …, ( имеет компоненты (i, j = m+1, …, n)) есть фундаментальная система решений на для системы (2.9). Пусть - матрица с элементами (i, j = m+1, …, n). Очевидно, что det 0 на . Для каждого j = m+1, …, n пусть (i = 1, …, m) определяется с помощью квадратур уравнений

(2.10)

(i = 1, …, m; p = m+1, …, n).

Пусть (p = m+1, …, n) обозначает с компонентами (i = 1, …, n) и пусть (p = 1, …, m). Так как (p = m+1, …, n) удовлетворяют системе (2.9) и первым m уравнениям (2.8), то они должны также удовлетворять остальным n-m уравнениям (2.8), и поэтому (p = m+1, …, n) являются решениями системы (2.8). таким образом, если Ш - матрица со столбцами (p = m+1, …, n) и

Ф=U Ш,

то Ф есть матрица-решение (ЛО) на I. U - неособая матрица.

Так как det =det на , то Ф есть неособая матрица на и, следовательно, является фундаментальным решением для системы (ЛО) на I.

Теорема 2.5. Пусть ц1 , ц2 , …, цm (m < n) - m известных линейно независимых решений системы (ЛО), причем цj (j = 1, …, m) имеют компоненты цij (i = 1, …, n). Предположим, что определитель матрицы с элементами цij (i, j = 1, …, m) на некотором подинтервале интервала i не обращается в нуль. Тогда с помощью подстановки (2.7) задачу определения n линейно независимых решений системы (ЛО) на можно свети к решению системы (2.9)порядка n-m и к квадратурам (2.10).

Избавимся теперь от ограничения, что матрица Фm неособая на некотором интервале. Ясно, что прямоугольная матрица с элементами цij (i = 1, …, n; j = 1, …, m) имеет ранг m в силу независимости решений цj (j = 1, …, m). Таким образом, для каждого t = t0 существует неособая квадратная матрица порядка m, которую мы получим, выбирая m строк i1, …, im из прямоугольной матрицы с n строками и m столбцами. В силу непрерывности эта матрица неособая на некотором интервале .

Хорошо известно и легко доказывается, что существует такая постоянная неособая матрица Т, применив которую к любому вектору х с n компонентами, получим матрицу Тх, имеющую своим m первыми компонентами компоненты вектора х с номерами i1, …, im. Полагая =Тх, мы заменим (ЛО) аналогичной системой, для которой выполняется первоначальное ограничение. Так как х=Т-1, то утверждение для х следует из доказанного уже утверждения для .

1.3 Неоднородные линейные системы

Пусть А - неособая квадратная матрица порядка n из непрерывных функций, определенных на действительном t-интервале I и b - непрерывный вектор на I, не равный тождественно нулю. Система уравнений

+b(t) (ЛН)

называется линейной неоднородной системой порядка n. Если элементы А и b непрерывны и даже измеримы и мажорируются суммируемой функцией на I, то существует единственное решение ц системы (ЛН), для которого

ц(ф) = о ,

где и | о | < . Единственность решения следует из того, что если бы существовало два решения ц1 и ц2, то из разность ц = ц1 - ц2 была бы решением однородной системы (ЛО) на I при ц(ф) = 0. Но, по теореме единственности для (ЛО), разность ц должна равняться на I нулю тождественно и, следовательно, ц1 = ц2.

Если известна фундаментальная матрица Ф системы (ЛО), то легко найти решение системы (ЛН).

Теорема 3.1. Если Ф - фундаментальная матрица для системы (ЛО), то функция

(3.1)

есть решение системы (ЛН), удовлетворяющее начальному условию

ц(ф) = 0 ().

Доказательство получается непосредственно при помощи прямой проверки.

Интуитивные соображения, с помощью которых можно получить выражение (3.1), заключаются в следующем6 для каждого постоянного вектора с функция Фс является решением системы (ЛО). Метод состоит в том, что мы рассматриваем с как функцию, определенную на I, и находим, какой должна быть с (если она существует), для того, чтобы функция ц = Фс была решением неоднородной системы (ЛН).

Пусть ц = Фс - решение системы (ЛН). Тогда

= +Ф=АФс + Ф= А ц + Ф= А ц + b,

где последнее равенство следует из (ЛН). Поэтому Ф= b, или

=b.

Последнее уравнение всегда разрешимо, причем если с(ф) = 0, то

.

Итак, ц определяется по формуле (3.1).

Легко видеть, что в условиях теоремы 3.1 решение системы (ЛН), удовлетворяющее условию ц(ф) = о (и | о | < ), дается в виде

, (3.2)

где - решение системы (ЛО), удовлетворяющее условию

цh(ф) = о .

Формула (3.1) (или (3.2)) называется формулой вариации постоянных для системы (ЛН).

Заметим, что формулу (3.1) можно записать в виде

,

где Ш - фундаментальная матрица системы

,

сопряженной системе (ЛО). Другая форма записи формулы (3.1) такова:

,

однако здесь необходимо ограничение .

1.4 Линейные системы с постоянными коэффициентами

Пусть А - постоянная квадратная матрица порядка n и рассмотрим соответствующую однородную систему

. (4.1)

Если n = 1, то (4.1) имеет очевидное решение еtА, и решение, которое при t = ф равно о , имеет вид е(t-ф)Ао . Оказывается, что решение имеет эту форму и в том случае, когда х, о являются векторами произвольной конечной размерности и А - квадратная матрица порядка n.

Теорема 4.1. Фундаментальная матрица Ф системы (4.1) дается формулой

Ф(t) = еtА (|t| < ), (4.2)

и решение ц системы (4.1), удовлетворяющее условию

ц(ф) = о (|ф | < , | о | < ),

имеет вид

ц(t) = е(t-ф)Ао (|t| < ). (4.3)

Доказательство. Так как е(tt = еtА еДtА, то из определения производной легко получаем, что

Поэтому Ф(t) = еtА есть решение системы (4.1). Так как Ф(0) = Е, то из (1.8) следует, что det Ф(t) = еtspА . Итак, Ф - фундаментальная матрица. Теперь формула (4.3) очевидна.

Замечание. Заметим, что выражение не обязано быть решением системы , если матрицы А(t) и не коммутируют. Они коммутируют, когда матрица А(t) либо постоянная, либо диагональная.

Интересно исследовать структуру фундаментальной матрицы (4.2). пусть J - каноническая форма матрицы А, указанная в теореме 1.1, и предположим, что Р - неособая постоянная матрица, такая, что АР = PJ.

Тогда

(4.4)

и J имеет вид

(4.5)

где J0 - диагональная матрица с элементами л1, л2,…, лq и

(i = 1, …, s). (4.6)

Далее,

(4.7)

и легкое вычисление показывает, что

(4.8)

Так как , то . Таким образом,

(4.9)

где - квадратная матрица порядка ri (n = q + r1 + … + rs). Поэтому, если известна каноническая форма (4.5), (4.6) матрицы А, то фундаментальная матрица еtА системы (4.1) дается в явном виде формулой (4.4), в которой еtJ может быть вычислена из (4.7), (4.8), (4.9).

Другая фундаментальная матрица системы (4.1) такова:

Ш(t) = еtАP = P еtJ. (4.10)

Пусть матрица Р имеет своими столбцами векторы р1, …, рn. Столбцы матрицы Ш. Которые мы обозначаем через ш1 , ш 2 , …, ш n , образуют совокупность n линейно независимых решений системы (4.1) и из (4.10) и вида матрицы J получаем

, , …, ,

,

,

,

,

.

Так как АР = PJ, то векторы р1, …, рn удовлетворяют соотношениям

Ар1 = л1р1,…, Арq = лqрq,

Арq+1 = л q+1рq+1,

Арq+2 = рq+1 + л q+1рq+2,

Арn-rs+1 = л q+sр n-rs+1,

Арn-rs+2 = р n-rs+1 q+sр n-rs+2,

Арn = р n-1 q+sр n.

Решения шj выражаются посредством независимых векторов р1, …, рn из предыдущей последовательности уравнений.

Формула вариации постоянных (3.1) в применении к неоднородной системе

+b(t) , (4.11)

где А - постоянная матрица, дает для решения ц системы (4.11), удовлетворяющего условию ц(ф) = 0, , выражение

.

Решение ц системы (4.11), удовлетворяющее условию ц(ф) = о , где , | о |< , имеет вид

.

1.5 Линейные системы с периодическими коэффициентами

Рассмотрим линейную однородную систему

, (5.1)

где А - матрица элементами которой служат непрерывные комплексные функции, и

(5.2)

для некоторой постоянной щ 0. В этом случае (5.1) называется периодической системой с щ-периодом А. Основной результат для таких систем состоит в том, что фундаментальную матрицу можно представить как произведение периодической матрицы с тем же периодом щ и матрицы-решения для системы с периодическими коэффициентами.

Теорема 5.1. Если Ф - фундаментальная матрица для системы (5.1), то тем же свойством обладает матрица

Ш(t) = Ф(t+щ) .

Каждой такой матрице Ф соответствует периодическая неособая матрица Р с периодом щ и постоянная матрица R, такие, что

Ф(t) = P(t)etR. (5.3)

Доказательство. Так как

,

то в силу (5.2)

.

Поэтому Ш есть матрица-решение системы (5.1), и эта матрица фундаментальная, так как det Ш(t) = det Ф(t+щ) 0 для .

Следовательно, существует постоянная матрица С, такая что

Ф(t+щ) = Ф(t)С, (5.4)

и, сверх этого, существует постоянная матрица R, такая что

С = ещR. (5.5)

Из (5.4) и (5.5) получаем

Ф(t+щ) = Ф(t) ещR. (5.6)

Определим матрицу Р по формуле

Р(t) = Ф(t) е-tR. (5.7)

Тогда, используя (5.6), получаем

Р(t+щ) = Ф(t+щ) е-(t+щ)R = Ф(t) ещR е-(t+щ)R = Ф(t) е-tR = Р(t).

Так как матрицы Ф(t) и е-< и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.