На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Нанотехнологии. Возможности и опасности

Информация:

Тип работы: контрольная работа. Добавлен: 04.05.2012. Сдан: 2011. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
РОССИЙСКИЙ  ГОСУДАРСТВЕННЫЙ СОЦИАЛЬНЫЙ УНИВЕРСИТЕТ
Курский институт социального образования
(филиал) РГСУ 

Факультет «Социальная работа, педагогика и  психология»
Кафедра философии и социологии 

Нанотехнологии. Возможности и опасности
(контрольная  работа)
по  дисциплине «Концепции современного естествознания» 
Специальность: 050711
 «Социальная  педагогика»
2 курс
Заочная форма обучения 
 
 

Выполнила:________________________
                                                                                                                                                                 (подпись)                 
Студентка группы 0313000 (050711.65)-
Социальная  педагогика 

Работа  проверена___________________
                                                                                                                                                                  (дата)
Оценка___________________________ 

Проверил_________________________                     
                                                                                                                                                                       (подпись) 
 
 

Курск
2011 

     Содержание
Введение……………………………………………………………….…………..3
    Понятие «нанотехнологии»……………………………………......…...4
    Возможности нанотехнологий и области их применения.……….…..6
    Потенциальная опасность, связанная с использованием нанотехнологий………………………………………….......………...10
Заключение…………………………………………………………………...…..15
Список  литературы………………………………………………………………17 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Введение
     Появившись  совсем недавно, нанотехнологии все  активней входят в область научных  исследований, а из нее – в  нашу повседневную жизнь. Разработки ученых все чаще имеют дела с объектами  микромира, атомами, молекулами, молекулярными цепочками. Создаваемые искусственно нанообъекты постоянно удивляют исследователей своими свойствами и имеют самые неожиданные перспективы своего применения.
     Основной  единицей измерения в нанотехнологических  исследованиях является нанометр – миллиардная доля метра. В таких единицах измеряются молекулы и вирусы, а теперь и элементы компьютерных чипов нового поколения. Именно в наномасштабе протекают все базовые физические процессы, определяющие макровзаимодействия.
     Природа сама наталкивает человека на идею создания нанообъектов. Любая бактерия, по сути, представляет собой организм, состоящий из наномашин: ДНК и РНК копируют и передают информацию, рибосомы формируют белки из аминокислот, митохондрии вырабатывают энергию. Очевидно, что на данном этапе развития науки ученым приходит в голову копировать и совершенствовать эти явления.
     Создание  сканирующего туннельного микроскопа в 1980 году позволило ученым не только различать отдельные атомы, но и  двигать их и собирать из них конструкции, в частности, компоненты будущих наномашин – двигатели, манипуляторы, источники питания, элементы управления. Создаются нанокапсулы для прямой доставки лекарств в организме, нанотрубки в 60 раз прочней стали, гибкие солнечные элементы и множество других удивительных устройств.
     По  всей видимости, в будущем нанотехнологии станут неотъемлемой частью повседневной жизни, однако о грядущих изменениях, которые могут произойти в  результате внедрения таких технологий в жизнь общества, можно только предполагать.
     1. Понятие «нанотехнологии»
     Один  нанометр (от греческого «нано» – карлик) равен одной миллиардной части  метра. На этом расстоянии можно вплотную расположить примерно 10 атомов. Пожалуй, первым ученым, использовавшим эту  единицу измерения, был Альберт  Эйнштейн, который в 1905 г. теоретически доказал, что размер молекулы сахара равен одному нанометру. Но только через 26 лет немецкие физики Эрнст Руска, получивший Нобелевскую премию в 1986 г., и Макс Кнолл создали электронный микроскоп, обеспечивающий 15-кратное увеличение (меньше, чем существовавшие тогда оптические микроскопы), он и стал прообразом нового поколения подобных устройств, позволивших заглянуть в наномир.
     Одним из основных видов нанообъектов являются наночастицы. При разделении вещества на частицы размером в десятки нанометров общая суммарная поверхность частиц в веществе увеличивается в сотни раз, а вследствие этого усиливается взаимодействие атомов материала с внешней средой, ведь теперь они почти все на поверхности. Это явление используется в современной технике. Например, в медицине применяется нанопорошок серебра, которое обладает антисептическими свойствами. Наночастицы диоксида титана отталкивают грязь и позволяют создать самоочищающиеся поверхности. Нанопророшок алюминия ускоряет сгорание твердого ракетного топлива. Новые литиево-ионные аккумуляторы, содержащие наночастицы заряжаются буквально за пару минут. Подобных примеров уже сейчас много. Еще одним элементом, открытым в восьмидесятых годах стали фуллерены. Эти конструкции напоминают мячи, состоящие из атомов углерода.
     Другим  хорошо известным наноэлементом  является углеродная нанотрубка. Это  одноатомный слой углерода, свернутый  в цилиндр диаметром в несколько  нанометров. Впервые эти объекты  был получены в 1952 году, но лишь в 1991 году они привлекли внимание ученых. Прочность этих трубок превышает прочность стали в десятки раз, они выдерживают нагрев до 2500 градусов и давление в тысячи атмосфер. Эта прочность свойственна и изготовленным на их основе материалам. В электронике нанотрубки могут применяться как хорошие проводники, а также и полупроводники. Это станет прорывом в электронике, позволив микросхемам уменьшаться.
     Еще одним наноматериалом является графен – двумерный углеродный слой, плоскость, состоящая из атомов углерода. Этот материал был впервые получен русскими физиками, работающими в Англии. Многие ученые полагают, что этот материал, обладающий уникальными свойствами, в будущем станет основой микропроцессоров, вытеснив современные полупроводники. Кроме того, этот материал также невероятно прочен.
     Все эти наноэлементы все чаще находят  применение в различных областях технологии – от медицины до космических  исследований.
     Все эти и многие другие идеи находятся  сейчас не только на стадии разработок, но и на этапе практического применения. Результаты некоторых тестов потрясают воображение, некоторые заканчиваются провалом. Вместе с тем растет энтузиазм ученых по поводу приближения эры воплощения самых фантастических идей, например, полного контроля над всеми природными процессами или нанофабрик, собирающих любые предметы непосредственно из атомов. Создано множество сценариев развития будущего нанотехнологий, включая и те, которые не сулят человечеству ничего хорошего. Однако можно сказать, что интерес к нанотехнологиям сейчас настолько велик, что именно он подчас и определяет направление, которое они принимают.  
 
 

2. Возможности нанотехнологий  и области их применения

     Текущие достижения пока весьма разрозненны  и не систематизированы. Наиболее значительных прикладных успехов добились, конечно, производители микроэлектроники. Ведущие косметические и фармацевтические фирмы также начинают переход к нанотехнологиям. Правда, изготавливаемые с их помощью препараты пока остаются самыми дорогими в своих категориях.
     И в других областях промышленности достижения единичны, хотя нет никаких принципиальных препятствий к масштабному использованию нанорешений – дело только за совершенствованием технологических процессов.

     Электроника. Собственные нанопрограммы развивают практически все ведущие разработчики электроники – IBM, Hewlett-Packard, Hitachi, Lucent, Mitsubishi, Motorola и др. Специалисты Intel совместно с учеными университета Беркли продемонстрировали одноэлектронный транзистор на базе открытых нобелевскими лауреатами Ричардом Смэлли, Робертом Карлом и Хэрольдом Крото фуллеренов (молекул углерода С60), служащих сегодня основой углеродных нанотрубок.

     Нобелевский лауреат Герд Бинниг, автор сканирующего туннельного микроскопа и сотрудник  исследовательского института IBM, предложил  технологию миллипедов (millipede). Он обратил внимание на способность силового микроскопа формировать в полимерах ямки наноразмера, наличие которых в определенных точках вещества можно трактовать как единичное значение бита. Бинниг, стараясь приспособить миллипеды к нуждам промышленности, научился одновременно сканировать множество таких ямок. В результате нынешнюю плотность записи данных на жестких дисках (100 Гб на 1 кв. см) IBM обещает повысить в десятки раз с помощью нескольких сотен параллельно работающих нанозондов.
     Военное научное агентство DARPA готовит микросамолет длиной 15 см и массой 50 г, способный  держаться в воздухе 60 мин, подниматься  на высоту 10 км и двигаться со скоростью 30 км/ч. Он оборудован видео- и инфракрасной камерами и радаром, а его бортовой микрокомпьютер обеспечивает самостоятельное движение по заданному маршруту.

     Энергетика. Ученые университета г. Тулса (шт. Оклахома) изобрели батареи размером 1 мкм, которые прекрасно подойдут для питания крохотных роботов. В научных институтах ряда стран проходят финальные стадии экспериментов по созданию углеродных электродов на основе одностенных нанорожков (особой разновидности нанотрубок) для метаноловых топливных элементов, способных обеспечивать десятки часов непрерывной работы ноутбуков и мобильных телефонов.

     Наночастички  разных материалов служат отличным катализатором. Так, добавленное в сырую нефть  нанозолото значительно повышает качество процесса ее очистки. А присадка к  топливу на основе углеродных трубок приводит к его более полной утилизации, снижая к тому же уровень вредных выбросов.

     Медицина. На смену проекту «Геном человека» пришел проект «Геном эпитаксиального слоя человека», фиксирующий химические процессы, способные запускать или останавливать работу различных человеческих генов. Такую работу можно выполнить только на базе современных нанодостижений. А Минздраву России с помощью нанотехнологий удалось расшифровать генетический код вируса атипичной пневмонии, полученного у единственного заболевшего ею российского гражданина.

     В университете Лос-Анджелеса создан зонд, состоящий из одной молекулы длиной 20 нм и способный образовывать временные связи с отдельными участками молекулы ДНК. Структуру ДНК можно при этом фиксировать в процессе томографического сканирования образцов растворов, содержащих такие молекулярные комплексы. Институт аналитического приборостроения РАН разработал ДНК-анализатор «Нанофор 03-С», определяющий последовательности молекул и выполняющий фрагментный анализ ДНК с разрешением в один нуклеотид.
     Компания Rutgers трудится над наномотором для устройства, перемещающегося по кровеносной системе человека и восстанавливающего поврежденную клеточную структуру. Сегодня все крупнейшие фармацевтические компании занимаются созданием систем клеточной доставки лекарств, подразумевающих перенос нанороботами целебных молекул прямо к вредоносным бактериям.

     Промышленность. Концерн BMW разрабатывает на базе нанопорошков самоочищающиеся автомобильные поверхности, а в Audi такие порошки применяются для создания прочных зеркал и отражателей, стойких к царапинам. Процессоры Intel и AMD полируются нанопорошком, что позволяет избежать загрязнения поверхности микроскопическими пылинками. Активно используются нанопорошки при изготовлении DVD-дисков.

     В Калифорнийском университете создана  легкая пена, содержащая наночастички стекла и превращающаяся после затвердевания в высокопрочный материал. Другая находка этих ученых, – материал, поверхность которого представляет собой множество игл длиной несколько нанометров, – будет применяться для покрытия корпусов подводных лодок. Он позволит снизить уровень трения корпуса о воду и сделает субмарины бесшумными. А еще одно достижение калифорнийцев, источник когерентного излучения на базе одного атома цезия, упростит управление будущими квантовыми компьютерами.
     Ученые  из российского Института общей физики РАН и Института нанотехнологий Международного фонда «Конверсия» вырастили на поверхности алюминия с хромовым покрытием с помощью установки нанолитографии «Луч-2» углеродные объекты размером 3 нм.
     В Принстонском университете разработан деформируемый электропроводник, который можно растягивать в два раза (до сих пор лучшие эластичные проводящие материалы растягивались на 5-10%). Он представляет собой проводящий слой из золота толщиной 25 нм. Теперь появляется возможность создавать переносные надувные компьютерные сети и кожу для роботов, способную передавать «ощущения» и упрощающую управление периферийными системами.
     Особое  внимание нанотехнологи уделяют  кристаллографии. Дело в том, что  ручная сборка одного наноустройства из атомов может потребовать нескольких лет, а до появления молекулярных роботов-сборщиков еще далеко. Поэтому немало исследований направлено на поиск технологий выращивания наноматериалов и наноустройств в виде кристаллов, которые к тому же по достижении определенного размера могут распадаться на множество копий с идентичной структурой.
     Институт  кристаллографии РАН представил технологию управляемого выращивания  нитевидных кристаллов кремния (так  называемые острийные наноструктуры), за рубежом пока отсутствующую. Радиус закругления на вершинах кристаллов составляет всего 2 нм, что позволяет использовать их в наноэлектронике как точечные источники электронов в лучевых приборах. Еще один проект ИК РАН – подготовка трековых наномембран с порами 50-5000 нм, применяемых в проектах выделения вирусов, тонкой очистки воздуха или жидкости и во множестве других задач.
     Создаваемый в ИК РАН компьютерный программный  комплекс BARD (базовый анализ рефлектометрических  данных) позволит определять электронную  структуру тонких (в том числе  нано-) пленок, анализируя различные  виды рассеиваемого ими излучения. Производители, зная детальную структуру нанопленок, смогут выпускать их промышленные образцы высокого качества. 

     3. Потенциальная опасность, связанная с использованием нанотехнологий
     Опасность наноматериалов в первую очередь  заключается в их микроскопических размерах. Во-первых, благодаря малым размерам, они химически более активны, вследствие большой суммарной площади поверхности «нановещества», в результате чего малотоксичное вещество может стать очень токсичным. Во-вторых, химические свойства «нановещества» могут в значительной степени меняться из-за проявлений квантовых эффектов, что в итоге может сделать безопасное вещество очень опасным. В-третьих, в силу своих малых размеров наночастицы свободно проходят сквозь клеточные мембраны, повреждая клеточные органеллы и нарушая работу клеток. Представьте себе попавшие в клетку многочисленные «иголки» нанотрубок, которые при движении с клеточным соком ломают и крушат всё на своём пути.
     Это вызывает определённые опасения, особенно после публикации ряда исследований. Так учёные, распыляя в вольерах с крысами аэрозоль, содержащую углеродные нанотрубки, установили, что это влечёт за собой тотальную гибель подопытных животных. Углеродные трубки без особого труда попадали в клетки лёгких животных, вызывая серьезные нарушения в клетках, и дальше разносились кровотоком по всему организму. В СМИ появлялись публикации о «чудо-носках» с наночастицами серебра, которые избавляют эту часть мужского гардероба от неприятного запаха. К счастью, учёные вовремя установили, что в результате стирки этих носков наночастицы серебра оказываются в воде, где способны вызывать тяжёлые нарушения репродуктивных функций, а также работы мозга водных организмов. Если учесть, что рано или поздно все канализационные сбросы оказываются в природных водоёмах, то нетрудно представить, что будет с водными организмами и людьми, использующими эту воду в питьевых целях. Через все существующие на сегодняшний день фильтры и системы очистки наночастицы проходят, как вода сквозь решето.
     В США недавно анонсировали «наноткань», для ликвидации нефтяных разливов. Заявлялось, что эта «чудо-ткань» абсорбирует нефти в 20 раз больше своего веса. К сожалению, о возможных последствиях использования этой «наноткани» не было сказано ни слова. Можно с уверенностью сказать, что повреждения этого высокотехнологичного материала при использовании неизбежны, а это значит, что фрагменты нановолокон в итоге окажутся в клетках живых организмов, а далее «отправятся в путешествие» по пищевым цепям
     На  смену экологии индустриального  общества должна прийти экология постиндустриального общества. Большинство существующих на сегодняшний день методик оценки качества окружающей среды направлено на выявление степени химического и физического загрязнения. Эти методики абсолютно не применимы для выявления «нанозагрязнения». Экологический мониторинг в будущем ждут большие перемены. Уже сейчас необходимо разрабатывать эффективные методы обнаружения наночастиц в природных средах (воде, воздухе и почве), разрабатывать методики определения токсичности наноматериалов и нормировать содержание различных наночастиц в окружающей среде, разрабатывать новые методы оценки воздействия на окружающую среду антропогенной деятельности. На сегодняшний день способов борьбы с «традиционным» химическим загрязнением, предостаточно, что нельзя сказать о предотвращении загрязнения окружающей среды «наночастицами». Здесь «традиционные» фильтры и системы очистки абсолютно бесполезны. Необходимо уже сейчас начинать работу над очистными системами нового поколения.
     Особые  опасения вызывает нанооружие. Как уже известно, из истории развития человечества, все передовые достижение науки первым делом водворяются в военной отрасли. Так в США уже был анонсирован «нанотермит». Это взрывчатое вещество, упорядоченное на атомарном уровне, производит ещё больше энергии в единицу времени. Чудовищной силы взрывчатое вещество может быть начинено нанотрубками, которые при взрыве рассеиваются на большой площади, вызывая нарушения работы клеток и органов живой силы противника. Кроме того, как нанооружие, так и токсичные нановещества могут стать опасной «игрушкой» в руках террористов.
     Потенциальную опасность нанотехнологий отмечают многие известные эксперты. Эрик Дрекслер, директор Института предвидения (Foresight Institute – ведущая нанотехнологическая организация США, финансирующая исследования и активно занимающаяся пропагандой данного направления), выдвинул концепцию серой слизи, завершающую существование человечества. Согласно этой концепции универсальные молекулярные самосборщики, обученные делать из подручных материалов себе подобные копии, едва будучи созданными, тут же примутся за окружающую среду, начнут штамповать свои клоны из доступных молекул и в конце концов всю Вселенную превратят в однообразную серую массу, состоящую только из нанороботов.
     А если работу саморепликаторов удастся  контролировать, то тогда они окажутся идеальным оружием. Но в любом  случае из-за того, что функционирование всех устройств микромира носит  вероятностный характер, всегда возможны мутации микроавтоматов под влиянием непредсказуемых внешних воздействий, приводящие к отказу от выполнения заданной программы и разрушительному поведению.
     Пока  концепция серой слизи не выдерживает  простой критики. Ведь для самосборки нанороботу нужны пальцы-манипуляторы, современные аналоги которых (микроэлементы модифицированных атомных микроскопов) значительно превосходят размеры атомов, что в принципе не позволяет создавать автономные сборщики наноразмеров. Кроме того, такие манипуляторы весьма несовершенны: к ним «прилипают» посторонние атомы, и пока неясно, как избавиться от всех этих побочных эффектов. Непонятно также, откуда подобным роботам брать энергию и как она будет рассеиваться в результате масштабных молекулярных преобразований. Пока что идея серой слизи (в том виде, в каком она сформулирована) противоречит законам термодинамики. Впрочем, теоретическая возможность создания самосборщиков остается, и то, что кажется совершенно нереальным сегодня, завтра вполне может стать обыденностью. Показательно, что в 2003 г. один из призов Института молекулярного производства (IMM), работа которого финансируется Институтом предвидения, был присужден за теоретические разработки по созданию стражей, способных контролировать деятельность саморепликаторов.
     Более вероятна другая проблема – концепция зеленой слизи. Ученые предупреждают, что существует реальная возможность создания разрушительных вирусов и бактерий, которые, быстро размножаясь, просто уничтожат всю жизнь на планете, разобрав белковые структуры на отдельные молекулы. В технологическом плане эта задача проще – вирусы могут пользоваться строительным материалом и готовыми энергоресурсами клеток. Так, в ноябре 2003 г. появилось сообщение о том, как ученые Института альтернативных биологических источников энергии (г. Роквилл, шт. Мэрилэнд) собрали за 14 дней точную живую копию вируса PhiX из коммерчески доступных материалов (в 2002 г. группа американских ученых создала таким же способом поливирус, но потратила на работу три года). PhiX известен тем, что стал первым земным существом, генетический код которого был расшифрован в 1978 г. Его геном состоит из 5386 элементов, причем ученые состыковывали их вручную. Далее они намерены сконструировать с нуля искусственную бактерию и попробовать автоматизировать технологию сборки ДНК, чтобы в будущем создавать более сложные живые организмы. Данный проект вызвал неодобрительные комментарии представителей ЦРУ, опасающихся, что технологии разработки вирусов станут доступны странам, поддерживающим глобальный терроризм.
Нанотехнологии  таят и другие опасности. В 2002 г. американское Агентство по защите окружающей среды, НАСА и международная неправительственная группа по защите прав человека в технологическую эру ETC Group по результатам совместного исследования сообщили, что вдыхание нанотрубок (на сегодня базового строительного наноматериала), которому случайно оказалась подверженной группа астронавтов, приводит к заболеванию легких. Такие углеродные трубки весьма схожи по негативному воздействию с обычной сажей. Кроме того, частицы наноустройств легко могут проникать в клетки через поры их стенок и накапливаться в органах. Последствия такого зашлаковывания пока неясны, но вряд ли они будут позитивными.
     Вызывают  определенную тревогу достижения в  сфере генных манипуляций. Наиболее активные сторонники этого направления выдвинули идею «нормального человеческого генотипа», разделяющую как отдельных людей, так и целые расы на «правильные» и «неправильные». По некоторым прогнозам, уже в 2020 г. отбор сотрудников на важные корпоративные позиции в развитых странах будет происходить после анализа ДНК на наличие отклонений в здоровье, а в 2025 г. к такой проверке добавится процедура исследования химических процессов мозга, позволяющая выявить предрасположенность человека к антисоциальному и, может быть, антикорпоративному поведению.
     Не  решено сегодня и множество этических  проблем. Общеизвестно негативное отношение  жителей многих стран к генетически  модифицированной пище (даже если она  позволяет этим государствам избавиться от голода), к трансплантации органов (даже если они будут выращиваться искусственно) и т. д. Главным препятствием на пути нанотехнологий остается сам человек. 
 
 

Заключение
     Миллиардные инвестиции в нанотехнологии связаны  с появлением у человечества шанса  решить все ключевые проблемы современности. Генетически модифицированные растения и животные, растущие не по дням, а по часам, победят проблему голода на планете. Нанороботы смогут собирать в неограниченных количествах любые предметы первой необходимости из произвольных подручных материалов. Избавление от голода и плохих условий жизни позволит правительствам сосредоточиться на повышении культурного уровня, а среднее образование станет доступно всем детям земли. Медики с помощью генной инженерии и молекулярных автоматов, способных следить за состоянием клеток человеческого тела и при необходимости ремонтировать их, рассчитывают сказать «нет» болезням, а возможно, и смерти. Удастся остановить гибель множества природных ресурсов и восстановить утраченные виды животных и растений, создав их клоны. Прекратится загрязнение планеты – нанороботы смогут переработать любые отходы, переводя их в удобрение или энергоресурсы. Появится возможность безопасных космических путешествий, а затем Земля и вся Солнечная система будут преобразованы во благо человечества. Все это согласно весьма авторитетным прогнозам вполне реально, «нано-рай» на Земле может наступить уже в первой половине нынешнего века. Ведь массовое распространение достижений, основанных на нанотехнологиях, начнется в ближайшие десятилетия.
     Но, к сожалению, в довесок ко множеству прикладных выгод земная цивилизация может получить не меньшие социальные проблемы. Два десятилетия практических исследований – это крайне мало для зрелости научного направления, поэтому отношение общества к нанотехнологиям сегодня очень неоднозначно. Вполне возможно, что с помощью нанотехнологий богатые станут еще богаче и смогут жить вечно. А представители остальной части человечества, получив от элиты бесплатный кусок хлеба и набор предметов первой необходимости, так и останутся людьми второго сорта, живущими под глобальным контролем НаноБрата.
     Все нанотехнологические достижения патентуются, поэтому доступ к ним серьезно ограничен уже сегодня. В каком  направлении свернет человечество под влиянием завораживающих нанодостижений, станет понятно достаточно быстро. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Список  литературы
Барыкина Е.И., Браже Р.А. Методические указания к семинарскому занятию по дисциплине «Концепции современного естествознания» для студентов дневной формы обучения специальностей - Ульяновск : УлГТУ, 2007. – 19 с. 

Кобаяси Н. Введение в нанотехнологию. М.: БИНОМ, 2005.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.