На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Лекции по "Концепции современного естествознания"

Информация:

Тип работы: Лекции. Добавлен: 06.05.2012. Сдан: 20 И. Страниц: 13. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОВРЕМЕННЫЕ  КОНЦЕПЦИИ
ЕСТЕСТВОЗНАНИЯ 

А.С.Чирцов 

(Конспект лекций для факультетов экономической ориентации) 

1996
                                                                                                      Введение
                                                                                                          
1. Структура естественно научных знаний 

     Естественные и гуманитарные науки.  Наука занимается изучением объективно существующих ( т.е. существующих независимо от чьего-либо сознания) объектов и явлений природы. Вопрос о том, существует ли окружающий нас мир сам по себе или он является продуктом деятельности  разума (принадлежащего некому высшему существу или каждому конкретному индивиду) составляет суть т.н. основного вопроса философии, классически формулируемом в виде дилеммы о первичности материи или сознания. В зависимости от ответа на основной вопрос философы подразделяются на материалистов (признают объективное существование окружающего нас мира, возникшего в результате саморазвития материи), объективных идеалистов (признают объективное существование мира, возникшего как результат деятельности высшего разума) и субъективных идеалистов (считают, что окружающий нас мир не существует реально, а есть плод воображения отдельного индивида) . По-видимому невозможно дать экспериментально обоснованного ответа на основной вопрос философии, хотя большинство естествоиспытателей являются приверженцами материалистических концепций.
     Все существующие научные дисциплины условно (любая классификация носит приближенный характер и неполно отражает истинную суть вещей!) разделены на две основные группы: естественнонаучные (занимаются изучением объектов природы и явлений, не являющихся продуктом деятельности человека или человечества) и гуманитарные (изучают явления объекты, возникшие как результат деятельности человека).
     Настоящий курс посвящен обзору важнейших концепций современного естествознания.
     Уровни организации материи и иерархия естественно научных знаний. Окружающие нас объекты природы имеют внутреннюю структуру, т.е. в свою очередь сами состоят из других объектов (яблоко  состоит из клеток растительной ткани, которая сложена из молекул, являющихся объединениями атомов и т.д.).  При этом естественным образом возникают различные по сложности уровни организации материи : космический, планетарный, геологический, биологический, химический, физический. Представители естественных наук, занимающиеся изучением объектов какого-либо уровня могут достичь их полного описания лишь основываясь на знаниях более “низкого” (элементарного) уровня (невозможно понять законы жизнедеятельности клетки, не изучив химизм протекающих в ней реакций). Однако реальные возможности каждого отдельного исследователя весьма ограничены (человеческой жизни недостаточно не только для того, чтобы плодотворно заниматься изучением сразу нескольких уровней, но даже заведомо не хватает на сколько-нибудь полное освоение уже накопленных знаний о каком-то одном). Из-за этого возникло деление естественно научных знаний на отдельные дисциплины, примерно соответствующие вышеперечисленным уровням организации материи: астрономию, экологию, геологию, биологию, химию и физику.  Специалисты, работающие на своем уровне, опираются на знания смежных наук, находящихся ниже по иерархической лестнице. Исключение составляет физика, находящаяся на “самом нижнем этаже” человеческих знаний (“составляющая  их фундамент”): исторически сложилось так,  что в ходе развития этой науки обнаруживались все более “элементарные” уровни организации материи (молекулярный, атомный, элементарных частиц...), изучением которых по-прежнему занимались физики.
     Естественные науки различных уровней не обособлены друг от друга. При изучении высокоорганизованных систем возникает естественная потребность в информации о составляющих их элементах, предоставляемой дисциплинами “более низких” уровней. При изучении же “элементарных” объектов весьма полезны знания о их поведении в сложных системах, где при взаимодействиях с другими элементами проявляются свойства изучаемых. Примером взаимодействия наук разных уровней может служить разработка Ньютоном классической теории тяготения (физический уровень), возникшей на основе законов движения планет Кеплера (астрономический уровень), и современные концепции эволюции Вселенной, немыслимые без учета законов гравитации.
     Естественные науки, находящиеся на нижних этажах иерархической лестницы, несомненно проще вышестоящих, поскольку занимаются более простыми объектами (строение электронного облака атома углерода, несомненно “проще пареной репы”, содержащей множество атомов с такими облаками!). Однако, именно из-за простоты изучаемых объектов науки нижних уровней сумели накопить  гораздо больше фактической информации и создать более законченные теории.
     Место математики среди естественных наук. Обсуждавшаяся выше структура естествознания не содержит математики, без которой невозможна ни одна из современных точных наук. Это связано с тем, что сама математика не является естественной наукой в полном смысле этого понятия, поскольку не занимается изучением каких-либо объектов или явлений реального мира. В основе математики лежат аксиомы, придуманные человеком. Для математика не имеет решающего значения вопрос,  выполняются ли эти аксиомы в реальности или нет (напр. в настоящее время благополучно сосуществует несколько геометрий, основанных на несовместных друг с другом системах аксиом).
     Если математика заботит лишь логическая строгость его выводов, делаемых на основе аксиом и предшествующих теорем, естествоиспытателю важно, соответствует ли его теоретическое построение реальности. При этом в качестве критерия истинности естественнонаучных знаний выступает эксперимент, в ходе которого осуществляется проверка теоретических выводов.
     В ходе изучения свойств реальных объектов часто оказывается так, что они приближенно соответствуют аксиоматике того или иного раздела математики (напр. положение небольшого тела можно приближенно описать, задав три его координаты, совокупность которых можно рассматривать как вектор в трехмерном пространстве). При этом ранее доказанные в математике утверждения (теоремы) оказываются применимыми к таким объектам.
      Кроме сказанного, математика играет роль очень лаконичного, экономного и емкого языка, термины которого применимы к внешне совершенно разнородным объектам окружающего мира (вектором можно назвать и совокупность координат точки, и характеристику силового поля, и компонентный состав химической смести, и характеристику экономико-географического положения местности).
     Очевидно, что более простые объекты нашего мира удовлетворяют более простым системам аксиом, следствия из которых математиками изучены более полно. Поэтому естественные науки “низших” уровней оказываются более математизированными.
     Опыт развития современного естествознания показывает, что на определенном этапе развития естественно научных дисциплин неизбежно происходит их математизация, результатом которой является создание логически стройных формализованных теорий и дальнейшее ускоренное развитие дисциплины.
     Приближенный характер естественнонаучных знаний. Несмотря на то, что естественные науки часто называют точными, практически любое конкретное утверждение в них носит приближенный характер. Причиной этого является не только несовершенство измерительных приборов, но и ряд принципиальных ограничений на точность измерений, установленных современной физикой. Кроме того, практически все реально наблюдаемые явления столь сложны и содержат такое множество процессов между взаимодействующими объектами, что их исчерпывающее описание оказывается не только технически невозможным, но и практически бессмысленным (человеческое сознание способно воспринять лишь весьма ограниченный объем информации). На практике исследуемая система сознательно упрощается путем ее замены моделью, учитывающей только самые важные элементы и процессы. По мере развития теории модели усложняются, постепенно приближаясь к реальности.
     Основные этапы развития естествознания могут быть выделены, исходя из различных соображений. По мнению автора, в качестве основного критерия следует рассматривать доминирующий среди естествоиспытателей подход к построению их теорий. При этом оказывается возможным выделение трех основных этапов.
     Естествознание древнего мира. Завершенного деления на дисциплины не существовало, создаваемые концепции в своем большинстве носили мировоззренческий характер. Экспериментальный метод познания в принципе допускался, но роль решающего критерия истинности эксперименту не отводилась. Верные наблюдения и гениальные обобщающие догадки сосуществовали с умозрительными и часто ошибочными построениями.
     Классический период развития естествознания берет свое начало с экспериментальных работ Галилея (18 век) и длится до начала нашего столетия. Характеризуется четким разделением наук на традиционные области и даже несколько гипертрофированной ролью эксперимента в их развитии (“понять- значит измерить”). Эксперимент рассматривается не только как критерий истинности, но и как основной инструмент познания. Вера в истинность экспериментально добытых результатов столь велика, что их начинают распространять на новые области и проблемы, где соответствующей проверки не производилось. При обнаружении расхождений так создаваемых концепций с реально наблюдаемыми явлениями неизбежно возникало недоумение, граничащее с попытками отрицания самой возможности познания окружающего мира.
     Современное естествознание характеризуется лавинообразным накоплением нового фактического материала и возникновением множества новых дисциплин на стыках традиционных. Резкое удорожание науки, особенно экспериментальной. Как следствие - возрастание роли теоретических исследований, направляющих работу экспериментаторов в области, где обнаружение новых явлений более вероятно. формулировка новых эвристических требований к создаваемым теориям: красоты, простоты, внутренней непротиворечивости, экспериментальной проверяемости, соответствия (преемственности). Роль эксперимента, как критерия истинности знания, сохраняется, но признается , что само понятие истинности не имеет абсолютного характера: утверждения, истинные при определенных условиях, при выходе за границы, в рамках которых проводилась экспериментальная проверка, могут оказаться приближенными и даже ложными. Современное естествознание утратило присущую классическим знаниям простоту и наглядность. Это произошло главным образом из-за того, что интересы современных исследователей из традиционных для классической науки областей переместились туда, где обычный “житейский” опыт и знания об объектах и происходящих с ними явлениях в большинстве случаев отсутствуют. 

     Настоящий курс посвящен современным концепциям естествознания, неотделимым от знаний, накопленных в классический период развития наук. Его структура не отражает традиционного разделения знаний на отдельные дисциплины, а скорее следует историческому ходу развития основных мировоззренческих идей, берущих свое начало в наиболее фундаментальной из естественных наук - физике. 
 

                                                               Раздел - 1
                      Мир глазами Исаака Ньютона 

2.  Пространство и время.
    
     Понятия пространства и времени являются философскими категориями и не определяются в естествознании. Для естественных наук важно уметь определять их численные характеристики - расстояния между объектами и длительности процессов, а так же - описывать их свойства, поддающиеся экспериментальному изучению.
     Измерение расстояний. Проблема ограниченности Вселенной. Измерить расстояние между двумя объектами - значит сравнить его с эталонным. До недавнего времени в качестве эталона использовалось тело, сделанное из твердого сплава, геометрическая форма которого слабо изменялась при изменении внешних условий. В качестве единицы длины был выбран метр, отрезок, сравнимый с характерными размерами человеческого тела. Очевидно, что в большинстве случаев эталон не укладывался целое число раз на длине измеряемого отрезка. Оставшаяся часть измерялась при помощи 1/10, 1/100 и т. эталона. В принципе считалось, что такую процедуру можно продолжать до бесконечности, в результате чего получалось бы точное значение длины, выражаемое бесконечной десятичной дробью, т.е. вещественным числом. (В математике понятие вещественного числа возникло как результат обобщения описанной процедуры измерения длин отрезков).
     На практике многократное деление исходного эталона было невозможно. Для повышения точности измерения и измерения малых отрезков потребовался эталон существенно меньших размеров, в качестве которого по настоящее время используются стоячие электромагнитные волны оптического диапозона.
     В природе существуют объекты, значительно меньшие длин волн оптического излучения (молекулы, атомы, элементарные частицы). При их измерениях помимо неудобства сравнения с  эталоном больших размеров возникает более принципиальная проблема: объекты, размеры которых меньше длины волны электромагнитного излучения, перестают его отражать и, следовательно, оказываются невидимыми.  Для оценки размеров таких мелких объектов свет заменяют потоком каких-либо элементарных частиц (электронов, нейтронов и т.д.). Величина объектов оценивается по т.н. сечениям рассеяния, определяемым отношением числа частиц, изменивших направления своего движения, к плотности падающего потока. Наименьшим расстоянием, известным в настоящее время, является характерный размер элементарной частицы ( м). Говорить о меньших размерах, по-видимому, бессмысленно.
       При измерении расстояний, значительно превышающих 1м, пользоваться эталоном длины вновь оказывается неудобно. Для измерения расстояний, сравнимых с размерами Земли, применяют методы триангуляции (определение большей стороны треугольника по точно измеренной меньшей стороне и двум углам) и радиолокации (измерение времени задержки отраженного сигнала, скорость распространения которого известна, относительно момента передачи), Для много больших расстояний (до удаленных звезд и соседних галактик) указанные методы оказываются вновь неприменимы (отраженный радиосигнал оказывается слишком слабым, углы треугольника отличаются от на слишком малую величину). На столь больших расстояниях наблюдаемыми оказываются только самосветящиеся объекты (звезды и галактики), расстояния до них оценивается исходя из наблюдаемой яркости.
      Размеры наблюдаемой части вселенной имеют размеры порядка м. Вопрос о том, имеют ли смысл большие расстояния сводится к проблемам конечности и ограниченности Вселенной, до сих пор окончательно не решенным космологией. Со времен Ньютона считалось, что окружающий нас мир однороден и не может иметь границ (в противном случае возникал вопрос о их физической природе и о том, “что находится по другую сторону”). Однако, предположение о бесконечности Вселенной, совместно с естественным допущением о равномерном распределении звезд по объему и беспрепятственном распространении света в пространстве, приводил к заведомо абсурдному выводу о бесконечно ярком свечении ночного неба (т.н. парадокс ночного неба). Позднее пришло понимание того, что понятия бесконечности и неограниченности не эквивалентны друг другу (напр. шар не имеет границ, но площадь его конечна).
        Измерение интервалов времени. Возраст Вселенной. Измерить длительность процесса - значит сравнить его с эталонным. В качестве последнего удобно выбрать какой-либо периодически повторяющийся процесс (суточное вращение Земли, биение человеческого сердца, колебание маятника, движение электрона вокруг ядра атома). Долгое время в качестве эталонного процесса использовались колебания  маятника. За единицу измерения времени выбрали секунду (интервал, примерно равный периоду сокращения сердечной мышцы человека).
      Для измерения значительно более коротких времен возникла необходимость в новых эталонах. В их роли выступили колебания кристаллический решетки (кварцевые часы имеют характерный период колебаний в 1нс= с) и движение электронов в атоме (атомные часы с характерным временем с ). Еще меньшие времена можно измерять, сравнивая их со временем прохождения света через заданный промежуток. по-видимому, наименьшим осмысленным интервалом является время прохождения света через минимально возможное расстояние ( с  ).
          При помощи маятниковых часов возможно измерение временных интервалов, значительно превосходящих 1с (человеческая жизнь длится около с), но и здесь возможности метода не беспредельны. Времена, сравнимые с возрастом Земли (ок. с) возможно оценивать лишь по полураспаду атомов радиоактивных элементов. Максимальным промежутком времени, о котором имеет смысл говорить в нашем мире, по-видимому является возраст Вселенной, оцениваемый периодом в с (началом существования нашего мира принято считать Большой взрыв, произошедший в весьма малой области пространства, в результате которого возник наблюдаемый сейчас мир, представляющий собой совокупность объектов, разлетающихся от начальной точки; события, произошедшие до Большого взрыва никак не влияют на настоящее и, следовательно, могут не рассматриваться).
     В классическом естествознании, занимающимся главным образом описанием макроскопических (сравнимых с размерами человеческого тела) объектов, предполагается, что процедура измерения основных пространственно-временных характеристик (расстояний и длительностей) в принципе может быть выполнена сколь угодно точно и при этом может практически не влиять на измеряемый объект и происходящие с ним процессы.
          Геометрические свойства пространства и времени. Геометрические свойства пространства изучаются геометрией, традиционно базирующейся на системе аксиом Евклида. В отличие от математики, для естествознания небезынтересен вопрос, соответствуют ли эти аксиомы реальным свойствам нашего пространства (напр. вполне мыслима ситуация, в которой сумма углов треугольника может отличаться от : на рис. 2_1 изображен треугольник, все углы которого прямые). Опыт показывает, что для наблюдателя, движущегося без ускорения вдали от массивных тел, аксиоматика Евклида выполняется с хорошей точностью.
         Важной характеристикой материальных систем является их число степеней свободы (минимальной количество чисел, необходимое для исчерпывающего описания положения объекта в пространстве). Чем большим числом степеней свободы обладает объект, тем более трудоемко его описание. Возникает естественный вопрос о минимальном числе степеней свободы, которым может обладать объект в нашем мире. Опыт показывает, что для не взаимодействующих с другими объектами тел это число равно 3 (тремя степенями свободы обладают, например, элементарные частицы с нулевым спином). Об этом свойстве нашего пространства говорят как о его трехмерности (иногда говорят, что трехмерность означает возможность задания трех взаимно перпендикулярных направлений в пространстве). Число степеней свободы большинства реальных объектов может быть существенно большим (спортивный велосипед с хорошо затянутыми болтами и гайками обладает как минимум 18 степенями свободы), однако при решении многих практических задач “внутренние степени свободы” оказываются несущественными (на финише велогонки положение педалей велосипеда лидера никем не регистрируется). Число рассматриваемых степеней свободы можно существенно сократить вплоть до трех (при движении в пространстве), двух (при движении по поверхности) или одной (при движении вдоль заданной кривой). Реальное тело при этом по существу заменяется моделью материальной точки (тело, размеры и форма которого в рассматриваемой ситуации несущественны).
         Для задания временных характеристик процессов может понадобиться несколько вещественных чисел (жизнь человека можно характеризовать, например, моментами его рождения, свадьбы и смерти). Однако существуют явления, для исчерпывающего временного описания которых достаточно одного числа (напр. распад элементарной частицы, который не имеет длительности, поскольку  не может быть разделен на какие-то промежуточные процессы). Существование таких “элементарных” процессов позволяет утверждать, что время одномерно.
       Аналогично тому, как в пространственном описании вводилась модельное представление о материальной точке, при описании эволюции во времени можно ввести понятие мгновенного события, т.е. процесса, длительностью которого в рассматриваемой ситуации можно принебречь (напр. удар мяча о стену часто можно считать мгновенным, хотя детальное рассмотрение показывает, что это весьма сложный и многоэтапный процесс).
          Относительность свойств пространства и времени. Во времена Ньютона считалось, что свойства пространства и времени абсолютны, т.е. не зависят от наличия материальных тел, протекающих процессов и наблюдателей. Современная физика показала ограниченность таких представлений: геометрические свойства пространства и времени  тесно связаны с наличием и расположением массивных тел, зависят от характера протекающих процессов и даже от состояния наблюдателя. В связи с этим сейчас принято говорить, что свойства пространства и времени относительны.
     В классическом естествознании рассматриваются макроскопические объекты и явления, происходящие в существующих независимо от них и друг от друга пространстве и времени, носящих абсолютный характер. 

3. Проблема движения 

     Классификация форм движения. В широком смысле понятие движение используется для обозначения любых изменений, происходящих с объектом или системой объектов с течением времени. Различным уровням организации материи соответствуют свои характерные формы движения (социальные, биологические, химические, физические и т.д.). Высшие формы движения включают в себя более простые и могут быть сведены к их совокупностям (напр. передача возбуждения между нервными клетками организма представляет собой импульсы токов и напряжений, распространяющихся по нейронам, а последние обусловлены движением положительно заряженных ионов Na и K). Простейшей формой является механическое движение, представляющее собой перемещение объектов в пространстве.
        Описание изменяющихся  во  времени  величин. Если какая-либо величина F, которой может быть приписано численное значение, изменяется во времени, это символически записывают в следующем виде:
(1)     .
     Существует несколько способов задания зависимости F(t), соответствующих различным уровням экспериментального изучения явлений.
      Табличный способ представляет собой набор численных значений измеряемой величины     в моменты времени    и наиболее достоверно отражает результаты измерений. В связи с тем, что измеряемые величины не могут быть определены абсолютно точно, корректная запись результатов измерений должна содержать информацию о погрешности в виде доверительного интервала, т.е. численного промежутка, в котором находится истинное значение измеряемой величины с заранее заданной вероятностью (обычно 90%). Ниже приводится пример  табличного задания роста ребенка во времени по результатам измерений, проводившихся по одному разу в год в месяц его рождения: 

Возраст (годы)         Рост (метры)
                    
..................................................
Основным недостатком этого способа является его малая наглядность.
     Графический способ состоит в нанесении точек на график, по осям которого отложены значения величин F и t. “Точки” положено изображать в виде фигур (прямоугольников, эллипсов, крестиков и т.д.), размеры которых отражают погрешность измерений (рис. 3_1). Обычно нанесенные точки соединяют плавной кривой, отражающей представления исследователя (часто весьма субъективные)  о истинном характере зависимости F(t). Интервал между точками на графиках желательно выбирать так, чтобы между ними изображаемая зависимость имела монотонный характер, т.е. не имела минимумов и максимумов.
       Аналитический способ представляет собой описание зависимости F(t) в виде функции, конкретный вид которой подбирается на основе разумного компромисса между требованиями наилучшего соответствия с результатами измерений и простоты формул. Часто качественный вид зависимости априорно известен из теории. При этом выбор рассматриваемых функций существенно сужается, результаты измерений частично учитываются подбором значений подгоночных параметров. Последний способ задания наиболее информативен, но наименее достоверен.
        Производная  и  интеграл. Для характеристики изменения величины F(t) вводится понятие скорости ее изменения (отношение приращения величины к соответствующему интервалу времени при условии, что последний весьма мал):
(2)       .
Для математической операции (2), носящей название дифференцирования или взятия производной, используется несколько общепринятых обозначений:
(3)       .
     Величина производной числено равна тангенсу угла наклона касательной к графику F(t) (рис. 3_2). В случае возрастания функции F ее производная положительна, при убывании - отрицательна. В точках экстремумов (минимумов и максимумов) производная обращается в нуль. По известной зависимости F(t) производная всегда вычисляется и при том - однозначно (исключение составляют лишь случаи, когда F(t) имеет разрывы, но в реальной природе подобных зависимостей практически никогда не встречается).
     Обратная задача- определение зависимости F(t) по известной скорости ее изменения   имеет однозначное решение лишь в случае дополнительного задания начального условия (значения величины F в какой-либо момент времени):
(4)     .
     Приращение величины F вычисляется в результате взятия определенного интеграла:
(5)      ,
числено равного площади под графиком зависимости  (рис. 3_2). По приращению величины и ее значению, согласно (5), можно найти F(t):
(6)        .
     Описание эволюции сложных систем. Системы, имеющие несколько степеней свободы, описываются набором величин называемых координатами системы (число координат N равно числу степеней свободы). Геометрическим образом состояния системы является точка в N-мерном пространстве конфигураций, координаты которой определяются набором . Если система изменяется с течением времени, составляющие набора изменяются и изображающая точка перемещается в конфигурационном пространстве = (t). 

        Векторные и скалярные величины. C математической точки зрения вектором можно называть упорядоченный набор чисел лишь в том случае, если он обладает рядом определенных свойств. В частности, для любых двух таких наборов должны быть определены операции сложения и умножения на число так, чтобы выполнялись следующие свойства:
коммутативности:   
(7)  ,              ,
ассоциативности:      
(8)  ,      ,
и дистрибутивности: 
(9)   ,   ,
Поскольку свойства (7-9) справедливы для операций сложения и умножения вещественных чисел, практически все утверждения из алгебры скалярных величин остаются справедливыми и для векторов. Вектор является обобщением понятия числа на случай многомерных пространств. Скаляры можно рассматривать как векторы в одномерном пространстве.
     Использование векторов позволяет строить описание весьма разнообразных объектов (материальных точек, сил, полей, состояний, численности населения городов, физиологических ощущений и т.д.), используя единообразные математические обозначения 

     Пользуясь аналогией с соотношениями (1-6), легко определить понятие вектора скорости изменения системы:
(10)   
и обобщить все последующие  соотношения на многомерный случай.
      Движение материальной точки в пространстве трех измерений является частным примеров эволюции во времени весьма простой системы, исчерпывающее описание которой дается тремя декартовыми координатами, совокупность которых называется радиус-вектором:
(11)    
(для обозначения “обычных” векторов в трехмерном пространстве будут использоваться жирные буквы без стрелок).
Сумма векторов определяется  как вектор, составляющие которого являются суммами соответствующих составляющих слагаемых
(12)        ,
а произведение на число - как вектор, составляющие которого получаются домножением составляющих исходного на это число:
(13)       .
Легко убедиться, что все необходимые свойства (7-9) при таком определении операций выполняются. Производная радиус-вектора по времени получила название вектора мгновенной скорости:
(14)         ,
а производная скорости - ускорения:
(15)         .
По известной зависимости положения тела от времени R(t) его скорость и ускорение определяются однозначно. В случае заданной скорости V(t) для однозначного определения радиус-вектора R(t)  необходимо знать положение тела в какой-то определенный момент времени (“начальное положение”). Если же задана зависимость ускорения от времени, то по ней может быть найдена скорость, а по последней - радиус-вектор. Очевидно, что решение будет однозначным, если заданы начальная скорость и положение тела.
     Относительность механического движения. Однозначное задание радиус-вектора возможно лишь после задания системы координат. Различные системы координат могут по-разному располагаться в пространстве и иметь  различные скорости движения. Получим связь между характеристиками движения материальной точки в неподвижной (0) и движущейся (0?) системах отсчета (рис. 3_3) . Пусть R(t) и R?(t) - радиус-векторы материальной точки в двух системах отсчета, а r(t) - вектор, задающий положений движущейся системы (0?) относительно неподвижной (0). Очевидно, что
(16)     .
Дифференцируя равенство (16) по времени, получаем закон сложение скоростей, позволяющий находить скорость относительно движущейся системы отсчета V?, если заданы скорость движения тела в неподвижной V и относительная скорость движения систем отсчета v:
(17)      .
Аналогичное соотношение справедливо  и для ускорений.
      Закон (10) показывает, что тело, покоящееся в одной системе отсчета, может двигаться в другой. Т.о. бессмысленно говорить о механическом движении вообще, не указав системы отсчета. Говорят, что механическое движение относительно.
     Закон преобразования координат (16), записанный для частного случая равномерного прямолинейного движения одной системы отсчета относительно другой (рис. 3_4) носит название преобразований Галилея:
(18)       .
Приведенные соотношения с точки зрения здравого смысла кажутся самоочевидными. На сомом деле при их выводе делаются весьма сильные допущения о том, что интервалы времени и длины отрезков одинаковы в обоих системах отсчета.
        Эффект Доплера, являющийся следствием закон сложения скоростей, имеет много интересных проявлений в природе и технике. Пусть какой-либо источник создает с частотой периодическое возмущение (“сигнал”) ,  распространяющееся в пространстве со скоростью C (примером может служить распространение звуковых волн в воздухе). Эффект Доплера состоит в том, что в случае движения источника или приемника частота принимаемого сигнала изменяется. Пусть, например, источник приближается к неподвижному приемнику со скоростью V. Скорость движения сигнала относительно источника, согласно (17), равна c?=c-v. За время между излучением двух последовательных сигналов пройденный возмущением путь окажется равным (рис. 3_5). Приемник будет регистрировать приход сигналов через время , т.е. с частотой
(18)     .
     При удалении источника (V<0) регистрируемая частота оказывается меньше исходной (звук, например, будет казаться более низким), при приближении (V>0) - частота возрастает (звук становится более высоким). В случае V=C частота становится бесконечно большой, что в акустике соответствует возникновению ударной волны при движении источника со скоростью звука (т.н. звуковой барьер).  При сверхзвуковом движении формула (18) формально дает отрицательное значение частоты, что соответствует приему сигналов, приходящих в обратном порядке по сравнению с их испусканием.
     В оптике наблюдается сходный эффект, приводящий к изменению частоты излучения (цвета) источника: удаляющиеся источники выглядят “более красными”, приближающиеся - “фиолетовыми” Количественные соотношения несколько отличаются от (18), поскольку при решении задач о движении с около световыми скоростями закон сложения скоростей (17) перестает выполняться. Астрономические наблюдения показывают, что спектры излучения далеких звезд смещены в красную сторону (т.е. частота приходящего от далеких звезд света оказывается заниженной), что служит основой для предположения о разбегании галактик или расширении Вселенной. Измерения сдвигов частот показали, что скорости разбегания звезд пропорциональны расстояниям до них (рис. 3_6):
(19)     ,
где константа H носит названия постоянной Хаббла.
        Утверждение о разбегании галактик ставит два естественных вопроса:
1) Не означает ли соотношение (19) что мы находимся в центре мира?
2) Куда разбегаются звезды?
          Ответ на первый вопрос достаточно очевиден: наблюдатель на любой другой звезде увидит точно такую же картину разбегания. Например, скорость звезды 1 относительно звезды 2, согласно закону сложения скоростей равна
(20)      ,
что соответствует закону Хаббла. (рис. 3_5).
        Удовлетворительный ответ на второй вопрос, попутно разрешающий парадокс звездного неба, по-видимому состоит в утверждении о глобальной неэвклидовости нашего пространства. Сказанное можно пояснить на модели двумерных существ, оказавшихся на поверхности сферы, радиус которой возрастает во времени (надувающийся шарик). Если на поверхность такой сферы
нанести точки (“звезды”), расстояние между ними будет увеличиваться в полном соответствии с законом Хаббла (прямыми в этом “искривленном мире” следует называть дуги больших кругов на поверхности сферы). Вопрос же о том, куда разбегаются звезды для двумерных существ вообще бессмысленен, поскольку они не способны даже представить истинного вида поверхности, на которой находятся. 

4. Взаимодействие тел
     Взаимодействие тел. Опыт показывает, что при сближении тел (или систем тел) характер их поведения меняется. Поскольку эти изменения носят взаимный характер, говорят, что тела взаимодействуют друг с другом. При разведении тел на очень большие расстояния (на бесконечность) все известные на сегодняшний день взаимодействия исчезают.
     Галлилей первым дал правильный ответ на вопрос, какое движение характерно для свободных (т.е. не взаимодействующих тел). Вопреки существующему тогда мнению, что свободные тела “стремятся” к состоянию покоя ( ), он утверждал, что при отсутствии взаимодействия тела находятся в состоянии равномерного движения ( ), включающего покой как частный случай.
     Инерциальные системы отсчета. В рамках формального математического подхода, реализуемого в кинематике, утверждение  Галилея выглядит бессмысленным, поскольку равномерное в одной системе отсчета движение может оказаться ускоренным в другой, которая “ничем не хуже” исходной. Наличие взаимодействия позволяет выделить особый класс систем отсчета, в которых свободные тела движутся без ускорения (в этих системах большинство законов природы имеют наиболее простую форму). Такие системы называются инерциальными. 
     Все инерциальные системы эквивалентны друг другу, в любой из них законы механики проявляются одинаково. Это свойство было также отмечено Галилеем в сформулированном им принципе относительности: никаким механическим опытом в замкнутой (т.е. не сообщающейся с внешним миром) системе отсчета невозможно установить покоится ли она или равномерно движется. Любая система отсчета, равномерно движущаяся относительно инерциальной тоже является инерциальной.
     Между инерциальными и неинерциальными системами отсчета существует принципиальное отличие: находящийся в замкнутой системе наблюдатель способен установить факт движения с ускорением последних, “не выглядывая наружу”(напр. при разгоне самолета пассажиры ощущают, что их “вдавливает” в кресла).  В дальнейшем будет показано, что в неинерциальных системах геометрия пространства перестает быть евклидовой.
      Законы Ньютона как основа классической механики.  Сформулированные И.Ньютоном три закона движения в принципе позволяют решить основную задачу механики, т.е. по известным начальному положению и скорости тела определить его положение и скорость в произвольный момент времени.
      Первый закон Ньютона постулирует существование инерциальных систем отсчета.
  Второй закон Ньютона утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе, физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности между силой и ускорением называют массой тела:
(1)      F=ma
Под действием одинаковых сил тела с большей массой приобретают меньшие ускорения. Массивные тела при взаимодействии в меньшей степени меняют свои скорости, “стремясь сохранить  естественное движение по инерции”. Иногда говорят, что масса является мерой инертности тел (рис. 4_1).
     К классическим свойствам массы следует отнести 1) ее положительность (тела приобретают ускорения в направлении приложенных сил), 2) аддитивность (масса тела равна сумме масс его частей), 3) независимость массы от характера движения (напр. от скорости).
        Третий закон утверждает, что взаимодействия оба объекта испытывают действия сил, причем эти силы равны по величине и противоположно направлены.
       Типы фундаментальных взаимодействий.  Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий, при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил).  Теоретические же осмысление, вцелом стремящееся к единому, максимально экономному  описанию наблюдаемого многообразия, неоднократно приволило к “великим объединениям” внешне совершенно несхожих явлений природы (ньютон понял, что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ).
         В настоящее время принят набор из четырех типов фундаментальных взаимодействий: гравитационные, электромагнитные, сильное и слабые ядерные. Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.
    Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).
     Электромагнитные взаимодействия  обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макро мире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.
     Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.
     В настоящее время стали весьма популярны рассуждения о биополе, при помощи которого “объясняется”  ряд не очень надежно установленных на эксперименте явлений природы, связанных с биологическими объектами. Серьезное отношение к понятию биополя зависит от того, какой конкретный смысл. Вкладывается в этот термин.  Если понятие биополя используется для описания взаимодействий с участием биологических объектов, сводящихся к четырем фундаментальным, такой подход не вызывает принципиальных возражений, хотя введение нового понятия для описания “старых” явлений противоречит общепринятой в естествознании тенденции к минимизации теоретического описания.  Если же под биополем понимается новый тип фундаментальных взаимодействий, проявляющийся на макроскопическом уровне (возможности существования которого априорно, очевидно, отрицать бессмысленно), то для столь далеко идущих выводов необходимы очень серьезные теоретические и экспериментальные обоснования, сделанные на языке и методами современного естествознания, которые до настоящего времени представлены не были.
       Законы Ньютона и основная задача механики. Для решения основной задачи механики (определение положения тела в произвольный момент времени по известным начальному положению и скорости) достаточно найти ускорение тела как функцию времени a(t). Эту задачу решают законы Ньютона (1) при условии известных сил. В общем случае силы могут зависеть от времени, положения и скорости тела:
(2)     F=F(r,v,t) ,
т.е. для нахождения ускорения тела необходимо знать его положение и скорость. Описанная ситуация в математике носит название дифференциального уравнения второго порядка:
(3)     ,
(4)     
В математике показывается, что задача (3-4) при наличии двух начальных условий (положение и скорость в начальный момент времени) всегда имеет решение и притом единственное. Т.о. основная задача механики в принципе всегда имеет решение, однако найти его часто бывает весьма трудно.
      Детерминизм Лапласа. Немецкий математик Лаплас применил аналогичную теорему о существовании и единственности решения задачи типа (3-4) для системы из конечного числа уравнений для описания движения всех взаимодействующих друг с другом частиц реального мира и пришел к выводу о принципиальной возможности расчета положения всех тел в любой момент времени. Очевидно, что это означало возможность однозначного предсказанная будущего (хотя бы в принципе) и полную детерменированность (предопределенность) нашего мира. Сделанное утверждение, носящее скорее философский, а не естественно научный характер, получило название детерминизма Лапласа. При желании из него можно было сделать весьма далеко идущие философские и социальные выводы о невозможности влиять на предопределенный ход событий. Ошибочность этого учения состояла в том, что атомы или элементарные частицы (“материальные точки”, из которых составлены реальные тела) на самом деле не подчиняются классическому закону движения (3), верному лишь для макроскопических объектов (т.е. обладающих достаточно большими массами и размерами). Правильное с точки зрения сегодняшней физики описание движения во времени микроскопических объектов, какими являются составляющие макроскопические тела атомы и молекулы, дается уравнениями квантовой механики,, позволяющими определить только вероятность нахождения частицы в заданной точке, но принципиально не дающего возможности расчета траекторий движения для последующих моментов времени. 
 
 
 

5. Законы сохранения
     Иерархия естественно научных законов. Количество законов природы, сформулированных в естественных науках к настоящему времени, весьма велико. Они неравнозначны.
      Наиболее многочисленным является класс эмпирических законов, формулируемых в результате обобщения результатов экспериментальных наблюдений и измерений. Часто эти законы записываются в виде аналитических выражений, носящих достаточно простой, но приближенный характер. Область применимости этих законов оказывается достаточно узкой. При желании увеличить точность или расширить область применимости математические формулы, описывающие такие законы, существенно усложняются. Примерами эмпирических законов могут служить закон Гука (при небольших деформациях тел возникают силы, примерно пропорциональные величине деформации), закон валентности (в большинстве случаев атомы объединяются в химические соединения согласно их валентности, определяемым положением в Периодической таблице элементов),  некоторые частные законы наследственности ( напр. сибирские коты с голубыми глазами обычно от рождения глухи). На ранних этапах развития естественных наук в основном шло по пути накопления подобных законов. Со временем их количество возросло настолько, что возник вопрос о нахождении новых законов, позволяющих описать эмпирические в более компактной форме.
      Фундаментальные законы представляют собой весьма абстрактные формулировки, непосредственно не являющиеся следствием экспериментов. Обычно фундаментальные законы “угадываются”, а не выводятся из эмпирических. Количество таких законов весьма ограничено (напр. классическая механика содержит в себе лишь 4 фундаментальных закона:  законы Ньютона и закон Всемирного тяготения). Многочисленные эмпирические законы являются следствиями (иногда вовсе не очевидными) фундаментальных. Критерием истинности последних является соответствие конкретных следствий экспериментальным наблюдениям. Все известные на сегодняшний день фундаментальные законы описываются достаточно простыми и изящными математическими выражениями, “не ухудшающимися” при уточнениях. Несмотря на кажущийся абсолютный характер, область применимости фундаментальных законов так же ограничена. Эта ограниченность не связана с математическими неточностями, а имеет более фундаментальный характер: при выходе из области применимости фундаментального законы начинают терять смысл сами понятия, используемые в формулировках (так для микрообъектов оказывается невозможным строгое определение понятий ускорения и силы, что ограничивает применимости законов Ньютона).
       Ограниченность применимости фундаментальных законов естественно приводит к вопросу о существовании еще более общих законов. Таковыми являются законы сохранения. Имеющийся опыт развития естествознания показывает, что законы сохранения не теряют своего смысла при замене одной системы фундаментальных законов другой. Это свойство теперь используется как эвристический принцип, позволяющий априорно отбирать “жизнеспособные” фундаментальные законы при построении новых теорий. В большинстве случаев законы сохранения не способны дать столь полного описания явлений, какое дают фундаментальные законы, а лишь накладывают определенные запреты на реализацию тех или иных состояний при эволюции системы.
         Связь законов сохранения с симметрией системы. Ответ на естественный вопрос о том, почему справедливы законы сохранения в физике был найден сравнительно недавно. Оказалось, что  законы сохранения возникают в системах при наличии у них определенных элементов симметрии. (Элементом симметрии системы называется любое преобразование, переводящие систему в себя, т.е.  не изменяющее ее. Например элементом симметрии квадрата является поворот на прямой угол вокруг оси, проходящей через его центр - “ось вращения четвертого порядка”).
        Глобальные законы сохранения связаны с существованием таких преобразований, которые оставляют неизменными любую систему. К ним относятся:
          Закон сохранения энергии, являющийся следствием симметрии относительно сдвига во времени (однородности времени).
           Закон сохранения импульса, являющийся следствием симметрии относительно параллельного переноса в пространстве (однородности пространства).
    Закон сохранения момента импульса, являющийся следствием симметрии относительно поворотов в пространстве (изотропности пространства).
   Закон сохранения заряда, являющийся следствием симметрии относительно замены описывающих систему комплексных параметров на их комплексно сопряженные значения.
      Закон сохранения четности, являющийся следствием симметрии относительно операции инверсии (“отражения в зеркале”, меняющего “право” на “лево”).
      Закон сохранения энтропии, являющийся следствием симметрии относительно обращения времени.
           Кратко рассмотрим законы сохранения механических величин.
     Закон сохранения импульса. Каждой материальной точке с массой m, движущейся со скоростью V, приписывается векторная характеристика - импульс, определяемый как произведение Массы на скорость:
(1)     .
Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил:
(2)      .
В случае системы материальных точек (совокупностью которых можно считать любое реальное тело) полный импульс определяется как векторная сумма всех импульсов
(3)       ,
Скорость изменения полного импульса определяется суммой внешних сил, действующих на систему (т.е. только сил, описывающих взаимодействие элементов системы с не принадлежащими ей объектами):
(4)    
     Системы, на которые не действуют внешние силы, называются замкнутыми. В них полный импульс не изменяется во времени. Это свойство находит большое практическое применение, поскольку лежит в основе принципа реактивного движения (рис. .5_1)..
      В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако, этот закон сохранения верен и в случаях, когда Ньютоновская механика неприменима (релятивистская физика, квантовая механика). Как отмечалось, он может быть получен как следствие интуитивно-верного утверждения о том, что свойства нашего мира не изменятся, если все его объекты (или начало отсчета!) переместить на некоторый вектор L. В настоящее время не существует каких-либо экспериментальных фактов, свидетельствующих о невыполнении закона сохранения импульса.
     Закон сохранения момента импульса. Если понятие импульса в классической механике характеризует поступательное движение тел, момент импульса вводится для характеристики вращения. В случае материальной точки, обладающей импульсом p, положение которой задается радиус-вектором R (рис. 5_2), ее момент импульса относительно начала координат равен
(5)      
(знаком [,] обозначена операция векторного умножения, в результате которой получается вектор, направленный в соотвествии с правилом правой руки в направлении, перпендикулярном перемножаемым векторам, числено равный ). Например, при движении тела по окружности вектор L направлен вдоль ее оси.
      Скорость изменения момента импульса определяется моментом силы (произведением силы на “плечо”):
(6)      .
Очевидно, что момент импульса сохраняется во времени в случае отсутствия сил или при условии действия сил в направлении R.
     Закон сохранения момента импульса является следствием утверждения о том, что свойства окружающего мира не изменяются при поворотах (или повороте системы отсчета) в пространстве.
      Момент импульса системы  точечных тел L определяется как сумма моментов каждой из точек и сохраняется во времени при условии равенства нулю момента внешних сил.
       В случае твердого тела, вращающегося вокруг неподвижной оси, все его точки движутся по окружностям, центры которых лежат на этой оси. Полный момент ориентирован вдоль оси вращения. Т.о. при отсутствии внешних воздействий  ось вращения тела вместе с L сохраняет свою ориентацию в пространстве. Это свойство используется в навигационных приборах (гирокомпасах).
В случае неравенства нулю момента силы соотношение (6) предсказывает весьма “необычное” с точки зрения “здравого смысла” поведение быстро вращающихся тел ( их момент импульса направлен по оси вращения) с помещенной на острие осью вращения (рис. 5_3).. Такие тела под действием внешних сил (например, силы тяжести) вместо того, чтобы перемещаться в сторону действия силы, начинают медленно вращаться вокруг острия в перпендикулярной приложенной силе плоскости.  Несмотря на то, что подобное поведение является непосредственным следствием законов Ньютона (или еще более общих законов сохранения и симметрии), этот эффект часто не только вызывает удивление у лиц, мало знакомых с точными науками, но и дает им повод рассуждать об “ошибочности  современного естествознания вообще и классической физики в частности.  Основанный на принципе “...если я не понимаю теории или наблюдаемого эффекта, то тем хуже для них...”, к сожалению до сих пор все еще популярен, хотя уже на протяжении нескольких столетий развивающееся естествознание демонстрирует его весьма  низкую эвристическую эффективность. 

Закон сохранения механической энергии утверждает, что сумма кинетических и потенциальных энергий элементов системы не изменяется во времени при условии, что в системе действуют только потенциальные (консервативные) силы. Этот закон механики является частным случаем более общего закона сохранения энергии, выполняющегося в любой замкнутой (изолированной от внешнего мира) системе. Формулировка закона сохранения энергии обладает меньшей наглядностью по сравнению с законами сохранения импульса и момента, поскольку для  понятия энергии по-видимому невозможно дать исчерпывающего определения даже в рамках классического естествознания. При взаимодействиях между телами энергия может переходить из одной формы в другую и описываться совершенно непохожими друг на друга математическими выражениями. В результате развития естествознания неоднократно открывались новые формы энергии, смысл этого понятия уточнялся.
     Первоначально в механике были введены кинетическая энергия (обусловленная движением тела)
(7)       , 

и потенциальная (обусловленная взаимодействиями между телами и зависящая от их расположения в пространстве) - U(R). Конкретное математическое выражение для U(R) определяется взаимодействиями между объектами. В большинстве механических систем механическая энергия (сумма K+U) сохраняется во времени (напр. в случае мяча, упруго ударяющегося о пол). Однако нередки и такие системы, в которых механическая энергия изменяется (чаще всего убывает). Для описания  этого были введены диссипативные силы (напр. силы вязкого и сухого трения и др.). Со временем выяснилось, что диссипативные силы описывают не исчезновение или возникновение механической энергии, а переходы ее в другие формы (тепловую, электромагнитную, энергию связи и т.д.). История развития естествознания знает несколько примеров того, как кажущееся нарушение закона сохранения энергии стимулировало поиск  ранее неизвестных каналов ее преобразования, что в результате приводило к  открытию ее новых форм (так, например, “безвозвратная” потеря энергии в некоторых реакциях с участием элементарных частиц послужила указанием на существование еще одной неизвестной ранее элементарной частицы, впоследствии получившей название нейтрино).
     Закон сохранения энергии имеет большое практическое значение, поскольку существенно ограничивает число возможных каналов эволюции системы без ее детального анализа(рис. 5_4). Так  на основании этого закона оказывается возможным априорно отвергнуть любой весьма проект весьма экономически привлекательного вечного двигателя первого рода (устройства, способного совершать работу, превосходящую необходимые для его функционирования затраты энергии).
        Обсуждение смысла оставшихся глобальных законов сохранения требует уяснения менее широко известных концепций современной физики и будет осуществлено ниже в соответствующих разделах настоящего курса. 

    
6. Законы движения небесных тел и строение Солнечной системы
     Двумя наиболее значительными успехами классического естествознания, основанного на механике Ньютона, были практически исчерпывающее описание наблюдаемого движения небесных тел и объяснение известных из  эксперимента законов идеального газа.
      Законы Кеплера.  Первоначально считалось, что Земля неподвижна, а движение небесных тел казалось весьма сложным. Галилей одним из первых высказал предположение о том, что наша планета не является исключением и тоже движется вокруг Солнца. Эта концепция была встречена достаточно враждебно. Тихо Браге  решил не принимать участия в дискуссиях, а заняться непосредственным измерениями координат тел на небесной сфере. Он посвятил этому всю свою жизнь, но не только не сделал каких-либо выводов из своих наблюдений, но даже не опубликовал результатов. Позднее данные Тихо попали к Кеплеру, который нашел простое объяснение наблюдаемым сложным траекториям, сформулировав три законов движения планет (и Земли) вокруг Солнца (рис.6_1):
1. Планеты двигаются по эллиптическим орбитам, в одном из фокусов которых находится Солнце.
2. Скорость движения планеты изменяется таким образом, что площади, заметаемые ее радиус-вектором за равные промежутки времени, оказываются равными.
3. Периоды обращения планет одной Солнечной системы и большие полуоси их орбит связаны соотношением:
(1)     .
     Сложное движение планет на “небесной сфере”, наблюдаемой с Земли, согласно Кеплеру, возникало вследствие сложения этих планет по эллиптическим орбитам с движением наблюдателя, совершающего вместе с Землей орбитальное движение вокруг солнца и суточное вращение вокруг оси планеты.
      Прямым  доказательством суточного вращения Земли был эксперимент, поставленный Фуко, в котором плоскость колебаний маятника поворачивалась относительно поверхности вращающейся Земли.
     Закон Всемирного тяготения. Законы Кеплера прекрасно описывали наблюдаемое движение планет, но не вскрывали причин, приводящих к  такому  движению (напр. вполне можно было считать, что причиной движения тел по кеплеровым орбитам являлась воля какого-либо существа или стремление самих небесных тел к гармонии). Теория гравитации Ньютона указала причину, обусловившую движение космических тел по законам Кеплера, правильно предсказала и объяснила особенности их движения в более сложных случаях, позволила в одних терминах описать многие явления космического и земного масштабов (движение звезд в галактическом скоплении и падение яблока на поверхность Земли).
       Ньютон нашел правильное выражение для гравитационной силы, возникающей при взаимодействии двух точечных тел (тел, размеры которых малы по сравнению с расстоянием между ними):
(2)      ,
которое совместно со вторым законом в случае, если масса планеты m много меньше массы звезды M, приводило к дифференциальному  уравнению
(3)      ,
допускающему аналитическое решение. Не привлекая каких-либо дополнительных физических идей, чисто математическими методами модно показать, что при соответствующих начальных условиях (достаточно малые начальные расстояние до звезды и скорость планеты) космическое тело будет совершать вращение по замкнутой, устойчивой эллиптической орбите в полном согласии с законами Кеплера (в частности второй закон Кеплера является прямым следствием закона сохранения момента импульса, выполняющегося при гравитационных взаимодействиях, поскольку момент силы (2) относительно массивного центра всегда равен нулю). При достаточно высокой начальной скорости (ее значение зависит от  массы звезды и начального положения) космическое тело движется по гиперболической траектории, в конце концов уходя от звезды на бесконечно большое расстояние.
       Важным свойством  закона гравитации (2) является сохранение его математической формы в случае гравитационного взаимодействия неточечных тел в случае сферически-симметричного распределения их масс по объему. При этом роль R играет расстояние между центрами этих тел.
      Движение небесных тел при наличии возмущений. Строго говоря, законы Кеплера выполняются точно лишь в случае движения лишь одного тела вблизи другого, обладающего значительно большей массой, при условии сферичности этих тел. При незначительных отступлениях от сферической формы (напр. из-за вращения звезды она может несколько “сплющиться”) орбита планеты перестает быть замкнутой и представляет собой прецессирующий вокруг звезды эллипс.
      Другим часто встречающимся возмущением является гравитационное влияние планет одной звездной системы друг на друга. Кеплеровы орбиты являются устойчивыми относительно слабых возмущений, т.е., испытав воздействие от близко пролетающего соседа, планета стремится вернуться на исходную траекторию. При наличии сильных возмущений (пролет массивного тела на небольшом расстоянии) задача о движении существенно усложняется и не может быть решена аналитические. численные расчеты показывают, что в  этом случае траектории планет перестают быть эллипсами и представляют собой незамкнутые кривые.
        Согласно третьему закону Ньютона существует сила, действующая на звезду со стороны планет. В случае M>>m ускорение звезды пренебрежимо мало и ее можно считать неподвижной. При наличии двух тел соизмеримых масс, притягивающихся друг к другу, возможно их устойчивое совместное движение по эллиптическим орбитам вокруг общего центра масс. Очевидно, что более массивное тело совершает движение по орбите меньшего радиуса. В случае движения планет вокруг звезды указанный эффект малозаметен. однако в космосе были обнаружены системы, совершающие описанное движение - двойные звезды
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.