На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Формации как классы групп, замкнутые относительно фактор-групп и подпрямых произведений, методика их произведения. Операции на классах групп, приводящие к формациям. Виды простейших свойств локальной формации всех групп с нильпотентным компонентом.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 20.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
«Гомельский государственный университет
имени Франциска Скорины»
математический факультет
кафедра алгебры и геометрии
Курсовая работа
"Локальные формации с метаабелевыми группами"
ГОМЕЛЬ 2006
Содержание
Введение
1 Формация. Произведение формаций
2 Операции на классах групп
3 Экраны
3.1 Экраны формации
3.2 Формация с однородным экраном
4 Локальная формация
5 Построение локальных формаций
6 Локальные формации с заданными свойствами
Заключение
Литература
Введение
Формации, т.е. классы групп, замкнутые относительно фактор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп.
В курсовой работе рассматривается произведение формаций, операции на классах групп, приводящие к формациям. Рассматриваются локальные формации и экраны. Рассматриваются простейшие свойства локальной формации всех групп с нильпотентным компонентом.
Формация. Произведение формаций
Определение 1.1 Классом групп называют всякое множество групп, содержащее вместе с каждой своей группой и все группы, изоморфные .
Если группа (подгруппа) принадлежат классу , то она называется -группой (-подгруппой).
Определение 1.2. Класс групп называется формацией, если выполняются следующие условия:
1) каждая фактор-группа любой группы из также принадлежит ;
2) из всегда следует .
Если формации и таковы, что , то называется подформацией формации .
По определению, пустое множество является формацией (пустая формация). Множество всех групп является, конечно, формацией. Единичная формация - это непустой класс групп, состоящий лишь из единичных групп. Формациями являются: класс всех -групп, класс всех абелевых групп, класс всех нильпотентных групп, класс всех -групп ( - фиксированное простое число), класс всех нильпотентных -групп, класс всех разрешимых групп, класс всех разрешимых -групп. Мы привели пока лишь примеры тех формаций, за которыми закреплены соответствующие обозначения.
Лемма 1.1. Справедливы следующие утверждения:
1) пересечение любого множества формаций также является формацией;
2) если - некоторое множество формаций, линейно упорядоченное относительно включения , то объединение является формацией.
Доказательство осуществляется проверкой.
Определение 1.3. Пусть - непустая формация. Обозначим через и назавем - корадикалом группы пересечение всех тех нормальных подгрупп из , для которых .
Очевидно, -корадикал любой группы является характеристической подгруппой. -корадикал группы обозначают иначе через и называют -корадикалом. -корадикал будем называть нильпотентным радикалом; понятны также термины разрешимый корадикал, -разрешимый корадикал, - сверхразрешимый корадикал и т.д. -корадикал (или абелев корадикал) - это коммутант группы. Так же как и коммутант, -корадикал сохраняется при гомоморфизмах.
Лемма 1.2. Пусть - непустая формация, . Тогда справедливы следующие утверждения:
1)
2) если то
3) если и , то
Доказательство. Пусть . Тогда
Отсюда следует, что . С другой стороны,
откуда получаем . Из и следует равенство . Утверждение 1) доказано.
Пусть - естественный гомоморфизм группы на Очевидно,
откуда следует равенство . В частности, если , то . Лемма доказана.
Определение 1.4. Пусть и - некоторые формации. Если , то положим Если , то обозначим через класс всех тех групп , для которых Класс называется произведением формаций и .
Из определения 1.4 следует, что произведение формаций является пустой формацией тогда и только тогда, когда по крайней мере одна из формаций является пустой. Можно определить произведение нескольких формаций как результат последовательного умножения. Если задан упорядоченный набор формаций причем произведение уже определено, то В частности, если для любого то мы приходим к понятию степени
Понятие произведения формаций представляет интерес с точки зрения построения формаций.
Теорема 1.1. Произведение любых двух формаций также является формацией.
Лемма 1.3. Пусть и - нормальные подгруппы группы . Тогда каждый главный фактор группы -изоморфен либо некоторому главному фактору группы , либо некоторому главному фактору группы
Доказательство вытекает из рассмотрения -изоморфизма
Теорема 1.2. Пусть - некоторая формация, - класс всех тех групп, все главные факторы которых принадлежат Пусть - объединение формаций Тогда - подформация формации
Доказательство. Из леммы 1.3 выводим, что - формация. Из теоремы 1.1 и леммы 1.1 вытекает, что класс является формацией. Если - минимальная нормальная подгруппа группы , то по индукции для некоторого натурального . Но тогда либо , либо - -корадикал группы . Так как , то отсюда вытекает, что , и теорема доказана.
Операции на классах групп
Определение 2.1. Всякое отображение множества всех классов групп в себя называется операцией на классах групп.
Операции мы будем обозначать, как правило, прямыми большими латинскими буквами. Результат операции , примененной к классу обозначается через Степень операции определяется так: Произведение операций определяется равенствами:
Введем операции следующим образом:
тогда и только тогда, когда вкладывается в качестве подгруппы в некоторую -группу;
тогда и только тогда, когда вкладывается в качестве нормальной подгруппы в некоторую -группу;
тогда и только тогда, когда является гомоморфным образом некоторой -группы;
тогда и только тогда, когда совподает с произведением некоторого конечного числа своих нормальных -подгрупп;
тогда и только тогда, когда имеет нормальные подгруппы такие, что
тогда и только тогда, когда является расширением -группы с помощью -группы;
тогда и только тогда, когда имеет нормальную подгруппу такую, что
Если , то вместо пишут Обратим внимание на тот факт, что если - нормальные подгруппы группы , причем для любого , то Заметим еще, что операцию можно определить с помощью понятия подпрямого произведения. Напомним (см. Каргаполов и Мерзляков [1]), что подгруппа прямого произведения называется подпрямым произведением групп если проекция на совпадает с Легко видеть, что тогда и только тогда, когда есть подпрямое произведение некоторого конечного числа -групп.
Определение 2.2. Класс называется замкнутым относительно операции или, более коротко, - замкнутым, если
Формацию можно определить теперь как класс групп, который одновременно -замкнут и -замкнут. -замкнутый класс согласно Гашюцу [3] называется насыщенным. -замкнутый класс групп называется гомоморфом. Класс групп называется замкнутым относительно подгрупп (нормальных подгрупп), если он -замкнут (соответственно -замкнут).
Лемма 2.1. . Если класс групп содержит единичную группу и -замкнут, то
Доказательство. Относительно операций и утверждение очевидно. Пусть - произвольный класс групп. Ясно, что Если , то в найдется нормальная подгруппа такая, что . Группа имеет нормальную подгруппу такую, что и Но тогда Так как , то , а значит, Таким образом, , что и требуется.
Пусть . Если , то имеет нормальную -подгруппу такую, что Группа имеет нормальную -подгруппу такую, что . Так как и , то из -замкнутости класса следует, что . Значит, , т.е. . Обратное включение очевидно.
Лемма 2.2. Для любого класса справедливо следующее утверждение:
Доказательство. Если , то Пусть Если , то , а значит, . Таким образом, . Пусть . Тогда имеет такие нормальные подгруппы , что Группа имеет такие нормальные подгруппы , что Так как , то , что и доказывает равенство
Лемма 2.3. Для любого класса имеет место включение
Доказательство. Если , то . Пусть и группа является подпрямым произведением групп , где . Рассмотрим функцию . Функция является гомоморфизмом группы в группу . Ясно, что
есть подпрямое произведение групп , причем . Следовательно, , и лемма доказана.
Лемма 2.4.
В работе Фишера, Гашюца и Хартли [1] введено следующее понятие, в некотором смысле двойственное определению формации.
Определение 2.3. Класс групп называется классом Фиттинга, если он одновременно -замкнут и -замкнут.
Класс Фиттинга мы будем в дальнейшем называть иначе радикальным классом. Ввиду двойственности (нормальная подгруппа - фактор-группа) формацию можно было бы назвать корадикальным классом.
Определение 2.4. Пусть непустой -замкнутый класс, содержащий 1. Обозначим через и назовем - радикалом группы произведение всех ее нормальных -подгрупп.
Классы являются радикальными. -радикал группы - это ее подгруппа Фиттинга -радикал обозначают иначе через и называют -радикалом. -радикал называют разрешимым радикалом; понятны также термины -нильпотентный радикал, -замкнутый радикал и т.д. Класс всех -нильпотентных групп является одновременно радикальным и корадикальным; - это -нильпотентный радикал группы .
В дальнейшем мы будем изучать формации, замкнутые относительно тех или иных операций; в частности, будут рассматриваться радикальные формации, т.е. формации, являющиеся одновременно и классами Фиттинга. Сейчас мы обратимся к задаче построение формаций с помощью операций
Теорема 2.1. Пусть и - формации, причем либо , либо замкнута относительно нормальных подгрупп. Тогда - формация, совпадающая с произведением
Определение 2.5. Пусть - некоторое множество групп. Пусть - пересечение всех тех формаций, которые содержат класс называется формацией, порожденной множеством групп
Заметим, что операцию часто обозначают иначе через Если то пишут вместо , причем в этом случае называют формацией, порожденной группой .
Теорема 2.2. Для любого класса имеет место равенство:
Доказательство. Если , то , и утверждение верно. Пусть . Так как , то класс является -замкнутым. есть класс и по лемме 2.2. Используя это и леммы 2.3 и 2.4, получаем
Последнее означает -замкнутость класса . Итак, - формация, содержащая , так как . Значит, . Обратное включение очевидно.
Лемма 2.5. Для любых элементов группы выполняются равенства Если - подгруппы группы , то выполняются следующие утверждения:
1)
2) для любого гомоморфизма группы ; в частности, если группа из нормализует и , то нормализует и
Лемма 2.6 Пусть - подгруппа нильпотентной группы , причем . Тогда
Доказательство. Для того чтобы доказать лемму, достаточно установить, что при любом натуральном выполняется включение:
При это верно, так как , а значит, . Предположим, что включение (*) справедливо при некотором . Тогда, используя лемму 2.5, получаем
Тем самым (*) доказано.
Теорема 2.3 (Брайант, Брайс, Хартли [1]). Если - такая подгруппа группы , что , то
Доказательство. Пусть - нильпотентная нормальная подгруппа группы , а - такая подгруппа из , что . Докажем индукцией по , что . Это верно, если . Поэтому будем считать, что . Рассмотрим следующие подгруппы прямого произведения
Очевидно, подгруппа нормализует и . Обозначим через подгруппу группы , порожденную подгруппами . Поскольку проекции на множители прямого произведения равны , то . Заметим еще, что , где нормальна в и нильпотентна как подпрямое произведение из .
Пусть - центр подгруппы , . Легко видеть, что , причем и поэлементно перестановочны; аналогично, и поэлементно перестановочны. Но тогда , абелева и нормальна в . Если , то , где , и если , то , что влечет . Следовательно, . Если абелева, то , и мы имеем
Предположим теперь, что . Ясно, что . Так как
то нильпотентна ступени . Так как , то изоморфна и имеет ступень , а потому согласно лемме 2.6 ее нормальное замыкание в имеет ступень . Так как нормализует и , то нормальна в . Итак, , причем . По индукции
Для группы и ее нильпотентной нормальной подгруппы ступени теорема также верна по индукции. Поэтому
Теорема доказана.
Теорема 2.4. (Нейман [1]) Формация, порожденная разрешимой группой, содержит лишь конечное число подформаций.
Доказательство. Пусть - подформация формации . Если , то по теореме 2.3 имеет место , что и требуется.
Экраны
Недостатком понятия групповой функции является то, что не всегда уплотнение -центрального ряда нормальными подгруппами является -центральным рядом.
Определение 3.1. Отображение класса всех групп в множество классов групп назовем экраном, если для любой группы выполняются следующие условия:
1) - формация;
2) для любого гомоморфизма группы ;
3) .
Из условия 2) вытекает, что экран принимает одинаковое значение на изоморфных группах, т.е. является групповой функцией в смысле определения 3.1. Кроме того, видно, что если - экран, то каждый f-центральный ряд после удаления повторений может быть уплотнен до f-центрального главного ряда, а значит, класс групп, обладающих f-центральными рядами, совподает с формацией .
Лемма 3.1. Пусть - экран, - группа операторов группы , - некоторая нормальная -допустимая подгруппа из . Если обладает нормальным -допустимым рядом, факторы которого -центральны относительно , то один из таких рядов проходит через .
Доказательство. Пусть дан ряд, удовлетворяющий условию леммы:
Пусть . Тогда ряд
будет искомым. В этом нетрудно убедиться, используя определение экрана и -изоморфизмы:
Лемма 3.2. Справедливы следующие утверждения:
1) пересечение любого непустого множества экранов также является экраном;
2) объединение любой непустой цепи экранов также является экраном.
Доказательство. Первое утверждение очевидно. Пусть непустое множество экранов является цепью, т.е. линейно упорядочено (с отношением частичной упорядоченности , введенным в определении 3.5). Тогда для любой группы множество формаций линейно упорядочено относительно включения, а следовательно, ввиду леммы 1.1 объединение является формацией. Тем самым лемма доказана.
Определение 3.2. Экран назовем:
1) p-однородным, если он p-постоянен и для любой группы и ее силовской p - подгруппы имеет место ;
2) однородным, если он p-однороден для любого простого p;
3) локальным, если он является локальной групповой функцией;
4) композиционным, если для любой группы имеет место , где пробегает все крмпозиционные факторы группы
5) пустым, если для любой неединичной группы ;
6) -экраном, если для любой группы .
-экран при будем называть единичным экраном.
Легко видеть, что каждый локальный экран является однородным, а каждый композиционный экран является примарно постоянным.
Пример 3.1. Пусть и - непустые формации, причем , а групповая функция такова, что для каждой нееденичной примарной группы и для любой непримарной группы . Тогда - однородный экран, не являющийся ни локальным, ни композиционным.
Пример 3.2. Пусть - непустая формация, а групповая функция такова, что для любой нееденичной группы выполняются условия:
1) , если не имеет абелевых композиционных факторов;
2) , если имеет хотя бы один абелев композиционный фактор.
Тогда - композиционный экран, не являющийся однородным.
Замечание 1. Локальный экран полностью определяется своими значениями на примарных подгруппах. Поютому, чтобы построить локальный экран , достаточно каждому простому числу поставить в соответствие некоторую формацию , а затем для любой группы положить , где пробегает .
Замечание 2. Чтобы построить композиционный экран , нужно каждой простой группе поставить в соответствие некоторую формацию , а затем для любой группы положить , где пробегает все композиционные факторы группы .
Лемма 3.3. Справедливы следующие утверждения: 1) пересечение любого непустого множества однородных экранов снова является однородным экраном;
2) пересечение любого непустого множества локальных экранов снова является локальным экраном;
3) пересечение любого непустого множества композиционных экранов снова является композиционным экраном.
Доказательство. Пусть экран является пересечением множества экранов . Предположим, что все экраны являются локальными, т.е. для любых и имеет место равенство:
где пробегает все примарные подгруппы группы . Тогда
а значит, - локальный экран.
Лемма 3.4. Объединение любой непустой цепи примарно постоянных экранов является примарно постоянным экраном.
Доказательство. Пусть - некоторая цепь экранов, - ее объединение, . По лемме 3.3 функция является экраном, причем ясно, что примарная постоянность влечет примарную постоянность экрана . Предположим, что все являются однородными экранами. Тогда, если - любая группа и , то . Следовательно,
что и доказывает однородность экрана .
Экраны формаций
Каждой групповой функции соответствует формация .
Лемма 3.5. является непустой формацией для любой групповой функции .
Определение 3.3. Пусть - некоторая формация. Если - такой экран, что , то формация называется ступенчатой формацией, причем в этом случае будем говорить, что
- экран формации ,
имеет экран ,
экран определяет формацию ,
определяется экраном .
Формация имеет единичный экран. Единичная формация имеет пустой экран.
Определение 3.4. Экран назовем внутреним, если - внутреняя групповая функция, т.е. для любой неединичной группы .
Лемма 3.6. Каждая ступенчатая формация имеет по крайней мере один внутрений экран.
Доказательство. Пусть - экран формации . Определим функцию следующим образом: для любой группы . Легко видеть, что - экран, причем . Если и - главный фактор группы , то . Так как класс -замкнут, то , а значит, -централен в . Таким образом, . Итак, , т.е. - искомый внутренний экран.
Лемма 3.7. Пусть - экран формации . Тогда является экраном формации .
Доказательство. Пусть - произвольный главный фактор группы . Пусть . Так как , то . Значит, , т.е. -централен в . Отсюда следует, что .
Обратно, если , то главный ряд группы будет -центральным для любого , т.е. . Итак, .
Лемма 3.8. Пересечение любого непустого множества экранов формации снова является экраном формации . Кроме того, если в имеется хотя бы один внутрений экран, то - внутрений экран.
Доказательство. То, что - экран формации , непосредственно следует из леммы 3.7. Пусть в имеется внутренний экран . Тогда для любой группы . Значит, - внутренний экран.
Формация с однородным экраном
Теорема 3.1. (Шеметков) Всякая формация, имеющая по крайней мере один однородный экран, является локальной формацией.
Доказательство. Пусть формация имеет однородный экран. Ввиду леммы 3.6 формация имеет внутренний однородный экран . Построим локальный экран , удовлетворяющий следующему условию: для любого простого . Тогда и, следовательно, . Предположим, что формация обладает группами, не входящими в , и выберем среди всех таких групп группу , имеющую наименьший порядок. Тогда является единственной минимальной нормальной подгруппой группы . Так как , то для любого имеет место
Если неабелева, то и . Если же - -группа, то получается, что -центральна в . А это противоречит тому, что . Теорема доказана.
Локальная формация
Неединичная формация, имеющая локальный экран, содержит некоторые неединичные примарные группы.
Определение 4.1. Формация называется локал и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.