На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Понятие средней величины

Информация:

Тип работы: курсовая работа. Добавлен: 07.05.2012. Сдан: 2011. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Федеральное агентство по образованию
ГОУ ВПО  «Российский заочный институт текстильной  и легкой промышленности»
Средние величины как статистические показатели
Курсовая  работа
по  дисциплине: ’’статистика’’
                                     Выполнила: студентка 2 курса
                                     Специальности 080502 СП
                                     Валеева Регина Радиковна
                                     _____________________2010г.
                                     Проверила: Майский  Р.А.                  
                                     ______________________2010г. 

  
 


СОДЕРЖАНИЕ 

Введение            3
1. Понятие средней  величины. Область применения средних  величин в  5
    статистическом  исследовании
2. Виды средних  величин и методы их расчета      7
3. Понятие вариации. Показатели вариации             14
4. Виды (показатели) дисперсий и правило их сложения           17
5. Заключение                  19
Список литературы                 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     ВВЕДЕНИЕ
     Средняя величина это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.
     Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.
     Вычисление  среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.
     Для того, чтобы средний показатель был  действительно типизирующим, он должен рассчитываться с учетом определенных принципов.
     Остановимся на некоторых общих принципах  применения средних величин. 
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя  должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя  должна рассчитываться для совокупности, единицы которой находятся в  нормальном, естественном состоянии.
4. Средняя  должна вычисляться с учетом  экономического содержания исследуемого  показателя. 
 
 
 
 
 
 
 
 
 
 

1. Средние величины используются на этапе обработки и обобщения полученных первичных статистических данных. Потребность определения средних величин связана с тем, что у различных единиц исследуемых совокупностей индивидуальные значения одного и того же признака, как правило, неодинаковы.
     Средней величиной называют показатель, который характеризует обобщенное значение признака или группы признаков в исследуемой совокупности.
     Если  исследуется совокупность с качественно  однородными признаками, то средняя  величина выступает здесь как типическая средняя. Например, для групп работников определенной отрасли с фиксированным уровнем дохода определяется типическая средняя расходов на предметы первой необходимости, т.е. типическая средняя обобщает качественно однородные значения признака в данной совокупности, каковым является доля расходов у работников данной группы на товары первой необходимости.
     При исследовании совокупности с качественно  разнородными признаками на первый план может выступить нетипичность средних  показателей. Такими, к примеру, являются средние показатели произведенного национального дохода на душу населения (разные возрастные группы), средние показатели урожайности зерновых культур по всей территории России (районы разных климатических зон и разных зерновых культур), средние показатели рождаемости населения по всем регионам страны, средние температуры за определенный период и т.д. Здесь средние величины обобщают качественно разнородные значения признаков или системных пространственных совокупностей (международное сообщество, континент, государство, регион, район и т.д.) или динамических совокупностей, протяженных во времени (век, десятилетие, год, сезон и т.д.). Такие средние величины называют системными средними.
Таким образом, значение средних величин  состоит в их обобщающей функции. Средняя величина заменяет большое число индивидуальных значений признака, обнаруживая общие свойства, присущие всем единицам совокупности. Это, в свою очередь, позволяет избежать случайных причин и выявить общие закономерности, обусловленные общими причинами. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.
Используются  две категории средних величин:
- степенные средние;
- структурные средние.
     Первая  категория степенных средних  включает: среднюю арифметическую, среднюю гармоническую, среднюю квадратическую и среднюю геометрическую.
     Вторая  категория (структурные средние) - это  мода и медиана.
Введем  следующие условные обозначения:
- величины, для которых исчисляется  средняя;
- средняя, где черта сверху  свидетельствует о том, что  имеет место осреднение индивидуальных значений;
- частота (повторяемость индивидуальных  значений признака).
Различные средние выводятся из общей формулы  степенной средней:
(5.1)
при k = 1 - средняя арифметическая; k = -1 - средняя  гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.
     Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней.
     Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.
Формула средней арифметической (простой) имеет вид
(5.2)
где n - численность совокупности.
Например, средняя заработная плата работников предприятия вычисляется как  средняя арифметическая:

Определяющими показателями здесь являются заработная плата каждого работника и  число работников предприятия. При  вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете  средних величин отдельные значения признака, который усредняется, могут  повторяться, поэтому расчет средней  величины производится по сгруппированным  данным. В этом случае речь идет об использовании средней арифметической взвешенной, которая имеет вид
(5.3)
Так, нам  необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:
1 - 800 ак. - 1010 руб.
2 - 650 ак. - 990 руб.
3 - 700 ак. - 1015 руб.
4 - 550 ак. - 900 руб.
5 - 850 ак. - 1150 руб.
Исходным  соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА):
ОСС = 1010 ·800+990·650+1015·700+900·550+1150·850= 3 634 500;
КПА = 800+650+700+550+850=3550.
В этом случае средний курс стоимости акций  был равен

     Необходимо  знать свойства арифметической средней, что очень важно как для  ее использования, так и при ее расчете. Можно выделить три основных свойства, которые наиболее всего обусловили широкое применение арифметической средней в статистико-экономических расчетах.
Свойство первое (нулевое): сумма положительных отклонений индивидуальных значений признака от его среднего значения равна сумме отрицательных отклонений. Это очень важное свойство, поскольку оно показывает, что любые отклонения (как с +, так и с -), вызванные случайными причинами, взаимно будут погашены.
Доказательство:

Свойство второе (минимальное): сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа (а), т.е. есть число минимальное.
Доказательство.
Составим  сумму квадратов отклонений от переменной а:
(5.4)
Чтобы найти экстремум этой функции, необходимо ее производную по а приравнять нулю:

Отсюда  получаем:

(5.5)
Следовательно, экстремум суммы квадратов отклонений достигается при  . Этот экстремум - минимум, так как функция не может иметь максимума.
Свойство третье: средняя арифметическая постоянной величины равна этой постоянной: при а = const.
     Кроме этих трех важнейших свойств средней  арифметической существуют так называемые расчетные свойства, которые постепенно теряют свою значимость в связи с использованием электронно-вычислительной техники:
- если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;
- средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;
- если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.
     Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.
Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:
(5.6)
К примеру, нам нужно вычислить среднюю  скорость двух автомашин, прошедших  один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней  гармонической, мы вычисляем среднюю скорость:

В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид
(5.7)
Данная  формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней  известен числитель, но неизвестен знаменатель.
Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров:
Вид товара Цена за единицу, руб. Сумма реализаций, руб.
а 50 500
б 40 600
с 60 1200
Получаем

Если  здесь использовать формулу средней  арифметической, то можно получить среднюю цену, которая будет нереальна:

     Средняя геометрическая. Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.
Для простой средней геометрической

Для взвешенной средней геометрической
(5.9)
Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).
Формула простой средней квадратической
(5.10)
Формула взвешенной средней квадратической
(5.11)
     В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность:
а) установление обобщающего показателя совокупности;
б) определение для данного обобщающего показателя математического соотношения величин;
в) замена индивидуальных значений средними величинами;
г) расчет средней с помощью соответствующего уравнения. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Вариацию можно определить как количественное различие значений одного и того же признака у отдельных единиц совокупности. Термин «вариация» имеет латинское происхождение - variatio, что означает различие, изменение, колеблемость. Изучение вариации в статистической практике позволяет установить зависимость между изменением, которое происходит в исследуемом признаке, и теми факторами, которые вызывают данное изменение.
     Для измерения вариации признака используют как абсолютные, так и относительные  показатели.
     К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.
     К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.
     Размах вариации R. Это самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:
(6.1)
     Размах вариации (размах колебаний) - важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.
     Среднее линейное отклонение d, которое вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности. Эта величина определяется как средняя арифметическая из абсолютных значений отклонений от средней. Так как сумма отклонений значений признака от средней величины равна нулю, то все отклонения берутся по модулю.
     Формула среднего линейного отклонения (простая)
(6.2)
     Формула среднего линейного отклонения (взвешенная)
(6.3)
     При использовании показателя среднего линейного отклонения возникают  определенные неудобства, связанные  с тем, что приходится иметь дело не только с положительными, но и  с отрицательными величинами, что  побудило искать другие способы оценки вариации, чтобы иметь дело только с положительными величинами. Таким способом стало возведение всех отклонений во вторую степень. Обобщающие показатели, найденные с использованием вторых степеней отклонений, получили очень широкое распространение. К таким показателям относятся среднее квадратическое отклонение  и среднее квадратическое отклонение в квадрате  , которое называют дисперсией.
     Средняя квадратическая простая
(6.4)
     Средняя квадратическая взвешенная
(6.5)
     Дисперсия есть не что иное, как средний квадрат отклонений индивидуальных значений признака от его средней величины.
     Формулы дисперсии взвешенной и простой :
(6.6)
     Расчет  дисперсии можно упростить. Для  этого используется способ отсчета  от условного нуля (способ моментов), если имеют место равные интервалы в вариационном ряду.
Кроме показателей вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации (V), выраженные в относительных величинах, особенно для целей сравнения колеблемости различных признаков одной и той же совокупности или для сравнения колеблемости одного и того же признака в нескольких совокупностях.
     Данные  показатели рассчитываются как отношение  размаха вариации к средней величине признака (коэффициент осцилляции), отношение среднего линейного отклонения к средней величине признака (линейный коэффициент вариации), отношение среднего квадратического отклонения к средней величине признака (коэффициент вариации) и, как правило, выражаются в процентах.
     Формулы расчета относительных показателей  вариации:
(6.7)
где VR - коэффициент осцилляции; - линейный коэффициент вариации; - коэффициент вариации.
     Из  приведенных формул видно, что чем  больше коэффициент V приближен к  нулю, тем меньше вариация значений признака.
     В статистической практике наиболее часто  применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). 
 

4. В статистическом исследовании очень часто бывает необходимо не только изучить вариации признака по всей совокупности, но и проследить количественные изменения признака по однородным группам совокупности, а также и между группами. Следовательно, помимо общей средней для всей совокупности необходимо просчитывать и частные средние величины по отдельным группам.
     Различают три вида дисперсий:
- общая;
- средняя внутригрупповая;
- межгрупповая.
     Общая дисперсия ( ) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле

где - общая средняя арифметическая всей исследуемой совокупности.
     Средняя внутригрупповая дисперсия ( ) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам ( ), затем рассчитывается средняя внутригрупповая дисперсия :
(6.9)
где ni - число единиц в группе
     Межгрупповая дисперсия  (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле
(6.10)
где - средняя величина по отдельной группе.
     Все три вида дисперсии связаны между  собой: общая дисперсия равна  сумме средней внутригрупповой  дисперсии и межгрупповой дисперсии:
(6.11)
     Данное  соотношение отражает закон, который  называют правилом сложения дисперсий. Согласно этому закону (правилу), общая дисперсия, которая возникает под влиянием всех факторов, равна сумме дисперсий, которые появляются как под влиянием признака-фактора, положенного в основу группировки, так и под влиянием других факторов. Благодаря правилу сложения дисперсий можно определить, какая часть общей дисперсии находится под влиянием признака-фактора, положенного в основу группировки. 
 
 
 
 
 
 
 
 
 
 
 
 

5. Заключение
     Средняя величина – величина абстрактная, т.к. характеризует значение признака у некоторой обезличенной абстрактной единицы совокупности. Но абстракция есть необходимая ступень любого научного исследования. В средней величине, как во всякой абстракции, осуществляется диалектическое единство отдельного и общего.
     Применение  средних в статистических исследованиях  должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.
     Средняя отражает то общее, что складывается в каждой отдельной единице совокупности. Благодаря этому средняя получает большое значение для выявления  закономерностей, присущих массовым явлениям и не заметным в отдельных единицах совокупности.
     Отклонения индивидуального от общей – это проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, прогрессивного, передового. В этом случае именно конкретные факты, взятые на фоне средних величин, характеризуют процесс развития. Характеристики типичных, реальных уровней изучаемых явлений и их изменений во времени и пространстве являются одной из главных задач средних величин.
     Так, изменение благосостояния населения страны на определенном этапе экономического развития находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг. 
Следует четко различать средние показатели интенсивности. Среднее из рассмотренного выше – это обобщенная характеристика по одному из изучаемых признаков, отражает то общее, что свойственно всем единицам совокупности. Так, заработную плату получают все рабочие предприятия (из нашего первого примера). А показатель интенсивности отражает отношение объемов двух разных совокупностей. Так, объем национального дохода страны на душу населения не означает, что каждая “душа” создает национальный доход (национальный доход страны создается только в сфере материального производства).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Литература 

1.  Боярский  А.Я. Теоретические исследования  по статистике: Сб. Науч. Трудов.–  М.: Статистика,1974. С. 19–57.
2. 1. Елисеева И.И. Общая теория статистики.
2. Теория статистики. Учебник./Под ред. Шмойлова Р. А. 3-е изд., перераб.-М.: Финансы и статистика, 2002
3. Гусаров В.М.  Теория статистики. - М.: Аудит, 2001. - 248 с. 
4. Кильдишев  Г.С., Овсиенко В.Е., Рабинович П.М., Рябушкин Т.В. Общая теория  статистики. - М.: Статистика, 2001. - 423 с.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.