Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


реферат Европейская революция в естествознании и развитие науки в России Нового времени

Информация:

Тип работы: реферат. Добавлен: 07.05.2012. Год: 2011. Страниц: 4. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Введение

Актуальность темы исследования.
В конце второй половины XVII века, когда на престол взошел молодой царь Петр I, Россия пережила переломный момент в своей исторической линии. В России были плохо развиты многие аспекты производственно-хозяй твенной отрасли. В этой связи нужно было срочно решать такую проблему, как нехватка ученых, которых в начале XVIII века в России просто не было.

Цель данной работы – исследовать европейскую революцию в естествознании и развитие науки в России Нового времени.
Для достижения поставленной цели в работе решаются следующие задачи:
    дать общую характеристику европейской революции;
    рассмотреть ученых средневековья;
    рассмотреть Ньютоновскую революцию;
    рассмотреть революцию Эйнштейна;
    рассмотреть развитие науки в России в Новое время.

Объект исследования – европейская революция в 18 – 19 века, а также наука в России в период Нового времени.























Общая характеристика европейской революции

Существует три основных революции в естествознании: аристотелевская, ньютоновская и эйнштейновская.
Начало естествознания считается с XVII столетия, что привело к коренным преобразованиям образа жизни человека. В XII в., когда в научном обиходе стало использоваться все научное наследие Аристотеля. Тогда, естественно, наука столкнулась с теологией и пришла с ней в противоречие. Разрешением этого противоречия стала концепция двойственности истины. Но даже в этих обстоятельствах еще очень долгое время все опытное знание и выводы, полученные из него методом дедукции, признавались лишь вероятными, обладающими только относительной, но не абсолютной достоверностью. В тех условиях религиозная картина мира представлялась более очевидной по сравнению с философско-научной.

Ученые сркдневековья

Конечно, до XVII в. были периоды Средневековья и Возрождения. В течение первого из них наука находилась в полной зависимости от богословия и схоластики. Для этого времени типичны астрология, алхимия, магия, каббалистика и другие проявления оккультного, тайного знания. Алхимики пытались с помощью химических реакций, протекающих в сопровождении специфических заклинаний, получив философский камень, способствующий превращению любого вещества в золото, приготовить эликсир долголетия, создать универсальный растворитель. В качестве побочных продуктов их деятельности появились мнете научные открытия, были созданы технологии получения красок, стекол, лекарств, сплавов и т.д. В целом развивающееся знание было промежуточным звеном между техническим ремеслом и натурфилософией и в силу своей практической направленности содержало в себе зародыш будущей экспериментальной ; науки. Однако постепенно накапливающиеся изменения привели к тому, что представление о соотношении веры и разума в картине мира стало меняться: сначала они стали признаваться равноправными, а затем, в эпоху Возрождения, разум был поставлен выше откровения. В эту эпоху (XVI в.) человек стал пониматься не как природное существо, а как творец самого себя, что и выделяет его из всех прочих живых существ. Человек становится на место Бога: он сам себе творец, он - владыка природы. Снимается граница между наукой как постижением сущего и практически-техничес ой деятельностью. Идет стирание граней между теоретиками-учеными и практиками-инженерам . Начинается математизация физики и фиэикализация математики, которая завершилась созданием математической физики Нового времени (XVII в.). У истоков ее стояли Н. Коперник, И. Кеплер, Г Галилей. Так, например, Галилей всячески развивал идею системаческого применения двух взаимосвязанных методов - аналитического и синтетического, называл их резолютивным и композитивным. Главным достижением в механике было установление им закона инерции, принципа относительности, согласно которому: равномерное и прямолинейное движение системы тел не отражается на процессах, происходящих в этой системе. Галилей усовершенствовал и изобрел множество технических приборов - линзу, телескоп, микроскоп, магнит, воздушный термометр, барометр и др.
Великий английский физик И. Ньютон (1643-1727 гг.) завер-шил коперниковскую революцию. Он доказал существование тяготения, как универсальной силы - силы, которая одновре-менно заставляла камни падать на Землю и была причинойзамкнутых орбит, по которым планеты вращались вокруг Солнца. Заслуга И. Ньютона была в том, что он соединил механическую философию Р. Декарта, законы И. Кеплера о движении планет и законы Г Галилея о земном движении, сведя их в единую всеобъемлющую теорию. После целого ряда математических открытий И. Ньютон установил следующее: для того, чтобы планеты удерживались на устойчивых орбитах с соответствующими скоростями и на соответствующих расстояниях, определяющихся третьим законом И. Кеплера, их должна притягивать к Солнцу некая сила, обратно - пропорциональная квадрату расстояния до Солнца; этому же закону подчиняются и, тела, падающие на Землю.

Ньютоновская революция

Ньютон создал свой вариант дифференциального и интегрального исчисления непосредственно для решения основных проблем механики: определения мгновенной скорости как производной от пути по времени движения и ускорения, как производной от скорости по времени или вто- рой производной от пути по времени. Благодаря этому ему удалось точно сформулировать основные законы динамики и закон всемирного тяготения. Ньютон был убежден в объективном существовании материи, пространства и времени, в существовании объективных законов мира, доступных человеческому познанию. Несмотря на свои огромные достижения в области естествознания, Ньютон глубоко верил в Бога, очень серьезно относился к религии. Он был автором «Апокалипсиса», «Хронологии». Эта приводит к выведу, что для И. Ньютона не было конфликта между наукой и религией, в его мировоззрении уживалось и то и другое.

Отдавая дань столь великому вкладу ученого в становление и развитие научной картины мира, научную парадигму этого периода или научную революцию XVI-XVII вв. называют ньютоновской.
И это вторая в истории европейской науки картина мира после аристотелевской. Ее основными достижениями можно считать:
натурализм-идею самодостаточности природы, управляемой естественными, объективными законами;
механицизм - представление мира в качестве машины, состоящей из элементов разной степени важности и общности;
квантитативизм-униве сальный метод количественного сопоставления и оценки всех предметов и явлений мира, отказ от качественного мышления античности и Средневековья;
причинно-следственный автоматизм жесткую детерминацию всех явлений и процессов в мире естественными причинами, описываемыми с помощью законов механики;
аналитизм - примат аналитической деятельности над синтетической в мышлении ученых, отказ от абстрактных спекуляций, характерных для античности и Средневековья;
геометризм-утвержден е картины безграничного однородного, и управляемого едиными законами космического универсума.
Еще одним важнейшим итогом научной революции Нового времени стало соединение умозрительной натурфилософской традиции античности и средневековой науки с ремесленно-техническо деятельностью, с производством. Кроме того, в результате этой революции в науке утвердился гипотетико-дедуктивн й метод познания.
В прошлом веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны давно, но изучались обособленно друг от друга. Их изучение показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию.

Революция Эйнштейна

В 30-е гг. XX в. было сделано другое важное открытие, которое показало, что элементарные частицы, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля - свойства корпускул. Это явление получило название дуализма волны и частицы.
Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения. Эта теория впервые ясно и четко установила связь между свойствами движущихся тел и их пространственно-време ной метрикой. А. Эйнштейн (1879-1955), выдающийся американский ученый, физик-теоретик, сформулировал некоторые , основные свойства пространства и времени исходя из своей теории:
1) их объективность и независимость от человеческого сознания и сознания всех других разумных существ в мире. Их абсолютность они являются универсальными формами бытия материи, проявляющимися на всех структурных уровнях ее существования;
2)неразрывную связь друг с другом и с движущейся материей;

3)единство прерывности и непрерывности в их структуре - наличие отдельных тел, фиксированных в пространстве при отсутствии каких-либо «разрывов» в самом пространстве;
По существу относительность восторжествовала и в квантовой механике, т.к. ученые признали, что нельзя:
1) найти объективную истину безотносительно от измерительного прибора;
2) знать одновременно и положение, и скорость частиц;
3) установить, имеем мы в микромире дело с частицами или с волнами. Это и есть торжество относительности в физике XX века.
Учитывая столь огромный вклад в современную науку и большое влияние на нее А. Эйнштейна, третью фундаментальную парадигму в истории науки и естествознания назвали эйнштейновской.

Развитие науки в России Нового времени

В России в XVIII в. были предприняты первые попытки создать систематизированный свод отечественной истории. Это 7-томная «История Российская» В.Н. Татищева (1686-1756), «История Российская» М.М. Щербатова (1733-1799) в 20 книгах.

Крупнейшим российским историком начала XIX в. был Н.М. Карамзин (1766-1826). Его главный труд – «История Государства Российского», написанная простым живым языком. За этой работой Карамзина последовали 29-томная «История России с древнейших времен» С.М. Соловьева (1820-1879), «Русская история» Н.И. Костомарова (1817-1885) и «Курс русской истории» В.О. Ключевского (1841-1911). Специалистом по всеобщей истории был Т.Н. Грановский (1813-1855).

Начало XVIII века в России связано с правлением императора Петра I. В
те годы с особой остротой встала проблема подготовки специалистов
различного профиля: кораблестроителей, моряков, инженеров, картографов, архитекторов и многих других. Для этого необходимо было развитие науки и образовательных учреждений.
Преобразования Петра в России дали прочную базу как для развития ряда
технических школ, так и для основанной в 1724 г. в Петербурге Академии
наук. Развитие промышленности требовало географических и геологических изысканий. Именно в начале XVIII века были обнаружены запасы каменного угля Донецкого и Кузнецкого бассейнов, нефть в Поволжье.
Географические исследования проводились на Юге России, в бассейнах
Каспийского и Аральского морей, в Сибири и на Дальнем Востоке (район Курильских островов). Тогда же состоялась экспедиция Витуса Беринга, обнаружившая и исследовавшая пролив между Азией и Америкой.
В области новых разделов науки большое внимание ученые России уделяли изучению электрических и магнитных явлений. Так, в 1804 г. русский физик В.В. Петров издал в Петербурге фундаментальный труд по электризации и электрическим машинам, который считался одним из крупнейших исследований начала XVIII века. В дальнейшем опыты и теория электрических явлений разрабатывались академиками М.В. Ломоносовым и Г.В. Рихманом, который погиб в результате опытов с атмосферным электричеством.
В то же время в Москве была основана обсерватория, где занимались как
изготовлением оптических приборов, так и расчеты астрономических явлений и популяризация астрономических знаний, например, в связи с предсказанием предстоящих солнечных затмений. В средние века заметные астрономические явления, такие как появление комет и затмения солнца служили основой для различных предрассудков. Кроме того, астрономические наблюдения необходимы для навигации и определения времени, особенно в дальних плаваниях в открытом море.
Для сбора и изучения редких явлений природы в начале XVIII века в
Петербурге был основан первый естественнонаучный музей в России –
Кунсткамера Петра I. Кроме того, примерно в то же время на окраине
Петербурга был основан Ботанический сад, где работали ученые, изучающие различные виды растений.
В связи с географическими открытиями издаются книги по астрономии и географии и поучает развитие необходимое для науки и техники книгопечатное дело. В Москве и Петербурге открываются типографии, работающие с новым , упрощенным (гражданским) шрифтом вместо применявшегося в церковной литературе старославянского шрифта. Для развития математики важную роль играло то, что старинные обозначения для цифр были заменены на арабские цифры, используемые до сих пор. Общие очертания букв новых шрифтов были выбраны лично Петром I и похожи на те, которыми напечатан этот текст.
В 1702 году в России впервые стала выходить печатная газета
“Ведомости”. Первоначально газета продавалась в Москве, в дальнейшем ее стали печатать и в Петербурге.
Для таких дел, как постройка зданий и крепостей а также кораблей,
составления карт и т.п. требовалась система подготовки людей, которых
сейчас называют инженерами и техниками, имеющими практическое образование.
Для их подготовки была основана Московская Навигацкая школа, расположенная в так называемой Сухаревой Башне, где кроме учебных помещений располагалась также первая в России обсерватория. Выпускники этой школы сейчас назывались бы профессорами и их направляли в другие училища для обучения будущих мастеров промышленных и морских дел. В дальнейшем Школу перевели в Петербург, где она стала основой Морской Академии России, в которой учились многие знаменитые флотоводцы. Подобные же “Навигацкие” школы были открыты в портовых городах России – Ревель (Таллинн), Астрахань, а также в Нарве и Новгороде.
В 1707 году в Москве основывается первая в России Медицинская школа, затем вторая школа была основана в Петербурге.
В связи с широкими географическими изысканиями в Москве также были открыты школы (сейчас сказали бы – высшие школы) изучения ряда иностранных языков, особенно языков восточных соседей России, что было необходимо для подготовки дипломатов и путешественников в эти государства.
Во время царствования Петра I кроме перечисленных высших учебных и научных заведений, были основаны более 40 общеобразовательных и технических школ в различных городах России. В них учили грамоте и счету, а также основам военного и морского дела (в специальных гарнизонных школах).
Кроме учеников российских высших и технических школ в начале XVIII века широко было принято отправлять детей дворян и государственных деятелей для обучения в европейские университеты и школы (морские, артиллерийские , архитектурные и так далее).
Начало XVIII века в Европе и в России было временем наибольшего
развития гидроэнергетики. Основным источником энергии для развивающейся промышленности уже не могла служить сила человека или животных, а также изменяющийся ветер. В это время были разработаны конструкции эффективно работающих водяных колес, в том числе верхнее наливных, имеющих высокий коэффициент полезного действия, а также реверсивных , т.е. позволяющих изменять направление вращения. Если вначале энергия воды использовалась только в тех местах, где природные условия дают крутое падение горизонта, то во время расцвета гидроэнергетики научились строить гидротехнические сооружения (плотины, каналы и т.д.), позволяющие строить водяные колеса в любой местности, в том числе и на равнинах.
На основе источников энергии, связанных с водяными колесами, возникли крупные мануфактуры с широким применением передаточных механизмов для привода технических устройств – молотов в металлургии, станков в металлургии и производстве тканей и т.д., а также так называемых “пильных мельниц” для разделки и обработки леса. Особенно развилась подобная техника на Урале, где были открыты большие запасы полезных ископаемых и особенно железа. Для его обработки (ковки, точения, сверления) требовалось большое количество энергии. Под руководством энергичных купцов Демидовых на Урале, где гористая местность позволяла особенно легко строить ги
и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.