На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Радиационные изменения кроветворения в ближайшие и отдаленные сроки. Описание экспериментов по изучению действия облучения на подопытных собак. Регуляция размножения и дифференцировки кроветворных клеток. Проявления отдаленных радиационных последствий.

Информация:

Тип работы: Курсовик. Предмет: Медицина. Добавлен: 30.08.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


39
Курсовая работа
на тему:
"Общие черты предпатологии радиационной и нерадиационной природы"
2009
Введение
Наличие длительного скрытого периода развития радиационного лейкоза, так же как и других отдаленных радиационных последствий, заставило обратить паше внимание па более тщательное изучение того внешне клинически благополучного состояния организма, которое наступает вслед за практически полным восстановлением организма, перенесшего воздействие радиации. Радиационная модель, как известно, удобна для исследования общих закономерностей развития ряда предпатологических состояний вообще, так как клинические проявления и, по-видимому, патогенез отдаленной радиационной патологии принципиально не отличаются от патологии хронических радиационных и многих токсических воздействий. В частности, выяснилось, что в механизмах развития многих проявлений этих видов патологии важную роль играют ослабление и истощение одних и тех же компенсаторно-восстановительных реакций и искажение взаимосвязей различных систем организма, определяющих возникновение и функционирование так называемых порочных патогенетических кругов и имеющих связь с возрастными изменениями организма.
1. Радиационные изменения кроветворения в ближайшие и отдаленные сроки
При анализе процессов восстановления гематологических показателей у человека после острой лучевой болезни (средней степени тяжести) мы обратили внимание па то, что они восстанавливаются значительно позднее клинического выздоровления организма. Восстановление цитологического состава крови обычно наблюдается через 4-6 мес. и касается не всех ростков кроветворения.
В первую очередь восстанавливается красная кровь, если ее показатели были снижены. Восстановление числа лейкоцитов и тромбоцитов происходит в более поздние сроки и не носит характера устойчивой нормализации. Особенно долго не восстанавливается число лимфоцитов в крови. Так, через 1,5--2 года после радиационного воздействия еще находили пониженное содержание лимфоцитов в крови человека. Следует сказать, что восстановление цитологического состава крови часто сопровождается сохранением извращенных реакций белой крови па различные воздействия: инфекции, травмы, функциональные нагрузки.
Более подробно эти вопросы изучены в экспериментах. Так, в опытах И. Н. Усачевой последовательность восстановления различных ростков кроветворения у облученных собак была следующей. После воздействия рентгеновскими лучами в дозах 6 и 8 Гр через 45 сут. у выживших собак еще были значительные нарушения в периферической крови и костном мозге, несмотря на внешнее клиническое благополучие. Они выражались в уменьшении числа эритроцитов, тромбоцитов, лейкоцитов и лимфоцитов и в отсутствии нормального количественного соотношения эритробластических и миелоидных клеток костного мозга. Одновременно отмечалось значительное повышение числа ретикулоцитов с последующим нарастанием числа эритроцитов периферической крови и увеличением числа кроветворных клеток в костном мозге, среди которых преобладают эритробластические. Через 4--6 мес. у большинства собак наблюдалось первоочередное восстановление эритропоэза. Стойкого восстановления тромбопоэза не обнаруживали и через 18 мес. К этому сроку еще отмечали значительные колебания их числа в сторону как повышения, так и понижения. Еще медленнее шло восстановление белой крови. Даже через 12 мес. после облучения в дозе 7 Гр у четырех собак из десяти обследованных в этот срок число лейкоцитов было в пределах 3--6 тыс. клеток в 1 мм3 вместо исходных 9-- 15 тыс. клеток. У двух собак, облученных в дозе 8 Гр и наблюдавшихся, и через 18--20 мес. число лейкоцитов не достигло исходного уровня. Эти изменения в значительной мере были обусловлены недостаточностью лимфопоэза.
Особый интерес представляют эксперименты Е.Н. Антипенко, специально поставленные для изучения последовательности восстановления показателей гемопоэза у собак после воздействия радиацией в дозах 4 и 6,5 Гр (часть собак при облучении в этих дозах подвергалась симптоматическому лечению). В группе выживших собак,
которых облучали в дозе 4,5 Гр (ЛД 50/30), восстановление гемопоэза происходило медленно. Быстрее всего восстанавливалось число эритроцитов. С 75-го дня после облучения их количество начинало превышать исходный уровень или равнялось ему. Число лейкоцитов за весь годовой период наблюдений не достигало исходных величин. Восстановление числа лимфоцитов шло наиболее замедленными темпами, и в последние месяцы эксперимента лимфоцитов в среднем оказалось в 2 раза ниже исходного уровня. Содержание тромбоцитов было значительно снижено -- в большинстве случаев больше, чем нейтрофилов. Число тромбоцитов достигло уровня 90% исходной величины лишь на 12-м месяце. При исследовании костного мозга на 4-м и 10-м месяце отношение клеток миелоидного ряда к клеткам эритроидного ряда было смещено в сторону красного ряда.
Наблюдали значительное преобладание молодых форм клеток над зрелыми формами в нейтрофильном ряду, что указывало на сохранение в этом ряду сильной стимуляции к ускорению пролиферации клеток, способных к делению, в ущерб их созреванию.
Собаки, облученные в дозе 6 Гр с последующим симптоматическим лечением (в течение месяца), через 8-- 10 мес. по общеклиническим показателям не отличались от здоровых животных. Исключение составили показатели крови и костного мозга (рис. 2). Во все сроки дальнейшего исследования (до трех лет после облучения) число лейкоцитов у них было снижено на 20%, так и не достигнув исходных величин. Это снижение происходило за счет еще большего уменьшения числа лимфоцитов -- на 33--50%. В то же время показатели красной крови находились в пределах нормы или даже несколько превышали ее. Следовательно, по срокам пострадиационного восстановления клетки крови располагаются в следующем убывающем порядке: эритроциты, нейтрофилы, тромбоциты и лимфоциты. Такая последовательность совпадает с разрозненными данными о последовательности восстановления клеток крови у людей, перенесших лучевую болезнь.
Далее следует еще отметить, что ни у одной из наблюдавшихся собак не удалось и через 3 года после облучения выявить нормализации лимфопоэза. В то же время показатели красной крови первыми достигали нормальных величин. Эта нормализация сопровождалась заметным увеличением числа ретикулоцитов, т. е. увеличенным выбросом из костного мозга в периферическую кровь недозревших эритроцитов. Это, а также сохранившийся сдвиг отношения бластных клеток белого и красного рядов в сторону красного свидетельствует о том, что нормализация содержания эритроцитов и гемоглобина в периферической крови происходит за счет напряжения эритропоэза.
По мнению многих специалистов, изменения красной крови в большинстве случаев прогностически более важны, чем белой крови. В организме отдается предпочтение восстановлению той крайне необходимой для организма дыхательной функции, какую выполняет красная кровь. Это позволило считать, что без истинной нормализации эритропоэза в преобладающем большинстве случаев трудно ожидать стабильного восстановления других ростков кроветворения и их функций, в частности иммунитета.
Однако представления о состоянии эритропоэза, полученные по данным общепринятых исследований цитологического состава крови и костного мозга, не всегда могут правильно отражать состояние кроветворения. Миелограммы в ряде случаев не позволяют судить о функциональной активности всей гемопоэтической ткани в силу возможной очаговости изменений в ней и в случаях изменения плацдарма кроветворения (т. е. массы кроветворной ткани). По данным пунктатов костного мозга трудно судить о количественных изменениях в скорости кроветворения, особенно когда нет изменений в соотношениях отдельных стадий созревания клеток. Поэтому суммарную продуктивность эритропоэза определяли по включению 59Fe в эритроциты. Меченое железо включалось на стадии гемоглобинизации эритроцитов. Расчеты меченого железа, поглощенного эритроцитами 1 мл крови, 1 млн. эритроцитов или 1 г гемоглобина, давали идентичные результаты. В этих условиях радиоактивность циркулирующих эритроцитов характеризовала продукцию их всей массой кроветворной ткани и поступление их в периферическую кровь. Примененная методика исключала влияние возможных часовых, суточных и ситуационных колебаний в течение указанных процессов па конечный результат, поскольку определялось интегральное поглощение 59Fe за четырехсуточный период.
Изучены суммарная интенсивность эритропоэза у собак через 1; 2,5; 12 и 42 мес. после облучения в дозе 4 Гр и показатели у других групп собак, подвергавшихся облучению в разных дозах. Выявлены наиболее характерные результаты для собак, у которых после перенесения острого лучевого поражения цитологические показатели крови не имели сколько-нибудь выраженных изменений или наблюдались умеренные изменения со стороны белой крови. После однократных облучений с конца первого месяца после лучевого воздействия и далее в различные сроки до 3,5 лет у многих, а в определенных условиях у большинства, собак отмечался повышенный темп эритропоэза при нормальном или несколько пониженном уровне лейкоцитов и значительно реже эритроцитов и гемоглобина. Часто, но не всегда обнаруживался ретикулоцитоз. Нередко наибольшее включение 59Fe в эритроциты наблюдалось у тех животных, у которых была более выраженная эритропения. Особенно значительное усиление темпа кроветворения (в 2 раза и более) отмечалось после облучения в дозах 2,0--3,5 Гр (дозы, близкие или несколько превышающие максимальные несмертельные, но вызывающие клинически выраженную лучевую болезнь).
Повышенный темп эритропоэза при нормальной периферической крови можно рассматривать как подтверждение того, что восстановление и нормализация системы красной крови, связанной с функциями, жизненно необходимыми для существования организма, происходят в первую очередь. Отсутствие изменений в цитологическом составе крови не должно служить доказательством истинного благополучия гемоноэза. Напряжение эритропоэза, отмеченное в течение весьма длительного времени после лучевого воздействия, может быть одной из причин задержки в восстановлении числа лейкоцитов (лимфоцитов) или тромбоцитов у перенесших лучевое поражение или отсутствия устойчивой нормализации в их уровне. Другими словами, без истинной нормализации эритропоэза не следует ожидать стабильного восстановления других ростков кроветворения и выполняемых ими функций, в первую очередь иммунитета. Отмечаемые в течение длительных периодов пострадиационные лейкопенические состояния с этих позиции следует, по-видимому, рассматривать как обусловленные преимущественной пролиферацией эритробластических элементов, что вызывалось необходимостью первоочередного восстановления и поддержания функций красной крови в пределах физиологической нормы.
Выявленные изменения в интенсивности гемопоэза нельзя однозначно связывать с глубиной радиационного поражения системы крови. Повышение темпа эритропоэза можно рассматривать как компенсаторно-приспособительную реакцию, направленную на поддержание функций красной крови в пределах физиологической нормы. Степень выраженности этой реакции определяется двумя главными факторами: необходимостью и возможностью ее развития. Необходимость повышения темпа эритропоэза возникает при ускоренной убыли эритроцитов из сосудистого русла. Выраженность этой реакции зависит от пределов физиологических возможностей регенеративного аппарата эритропоэза и глубины его радиационного поражения.
Продолжительность жизни эритроцитов в сосудистом русле у изучавшихся собак, определявшаяся с помощью метки собственных эритроцитов 51Сг, оказалась сокращенной. У одной опытной и у одной контрольной здоровой собаки одновременно определяли и интенсивность эритропоэза, и эритрофагоцитарную функцию селезенки через 190 суток после окончания многократного лучевого воздействия, используя 51Сг в качестве метки. С указанной целью через 2 недели после введения в организм меченных изотопом собственных эритроцитов извлекали селезенку и готовили срезы толщиной около 0,5 см. Срезы промывали физиологическим раствором для удаления крови, после чего определяли их радиоактивность, средняя величина которой выражалась в процентах от радиоактивности селезенки контрольной собаки. У облученной собаки радиоактивность была в 1,5 раза больше, что свидетельствовало об усилении фагоцитоза эритроцитов клетками селезенки.
Подробное описание состояния указанных групп собак дано в наших монографиях [Акоев, 1970; Акоев и др., 1981]. Средние данные по 12 собакам через 190 сут после окончания многократного облучения: внешнее клиническое благополучие, морфологический состав крови у облученных собак не выходил за пределы нормы. Однако отмечалось относительное снижение числа лейкоцитов (на 2,9 тыс. клеток в 1 мм3 крови) и повышение содержания ретикулоцитов (3,1% против 1,2% в контрольной группе). Это давало повод предполагать скрытое напряжение эритропоэза. И действительно, оно подтвердилось исследованиями с меченым железом. Суммарное поступление эритроцитов в русло крови оказалось в 1,75 раза выше нормального, что, в свою очередь, могло служить косвенным доказательством ускоренного разрушения эритроцитов.
Возможность очень длительного сохранения сокращенной продолжительности жизни эритроцитов у человека после радиационных воздействий была показана Хубером и Ширакурой на примере исследований, проводившихся не менее чем через 6 лет после успешной лучевой терапии 25 женщин по поводу рака матки и обнаруживших у них уменьшенную продолжительность пребывания эритроцитов в сосудистом русле.
Изложенные исследования, выполненные нами на собаках, демонстрируют определенную последовательность включения и выключения разных механизмов усиления продуктивной способности гемопоэза, необходимых для поддержания в первую очередь функции красной крови. Из анализа представленных данных можно заключить, что примат производства клеток красного ростка существует тогда, когда имеется значимая для организма недостаточность количества эритроцитов и гемоглобина. Первым мобилизуемым резервом является расширение плацдарма кроветворения, т. е. увеличение массы гемопоэтической ткани. Этот резерв -- расширенный плацдарм кроветворения -- используется организмом наиболее длительно. У собак в этот период «костный мозг» грудины и энифимзов на секции становится красным, т. е. происходит замещение его эритропоэтической тканью.
Вторым возможным мобилизуемым резервом является ускорение прохождения клетками делящегося и делящегося-созревающего пулов. Наконец, позже всех и на самое короткое время (на месяц-полтора) может увеличиваться митотический индекс эритробластов, непосредственно отражающий в этих условиях сокращение их генерационного цикла.
Основные наблюдения за состоянием кроветворения у собак в отдаленный пострадиационный период (изменения периферической крови и интенсивность эритропоэза) были подтверждены нами и в экспериментах на крысах.
Возможность сокращения продолжительности генеративного цикла бластных клеток белого и красного ряда была доказана А.В. Илюхиным с соавторами при длительном хроническом воздействии радиации на собак. После введения фенилгидразина или массивного кровопускания также обнаружено сокращение генерационного времени делящихся эритробластов, которое в основном происходило за счет стадии Gt.
Была подробно изучена цитокинетика кроветворения у собак на протяжении трехлетнего слабого хронического воздействия радиации. Собак в течение трех лет непрерывно (кроме времени на кормление и обследование) облучали: суммарные дозы от 0,63 до 5,70 Гр.
В периферической крови на 4--12-м месяце облучения отмечали ретикулоцитоз, сокращение времени пребывания эритроцитов в крови (на 12--24-м месяце) при сохранении числа эритроцитов и содержании гемоглобина в пределах контрольных значений (табл. 2). Это могло указывать па скрытое напряжение эритропоэза для компенсации сокращения продолжительности жизни эритроцитов и поддержания увеличенной скорости обновления эритроцитов.
Оценка костномозговой продукции эритроцитов показала статистически значимое ее увеличение, сохранявшееся в течение всего второго года облучения. Тем не менее качество эритроцитов (насыщенность гемоглобином, кривые Прайс--Джонса) не ухудшалось. К концу третьего года все показатели были в пределах нормы.
Со стороны белой крови отмечали стойкое снижение лейкоцитов и нейтрофилов па протяжении всего третьего года облучения. Продолжительность пребывания грану
Таблица 2. Сроки (в месяцах) выявления статистически достоверных отклонений в цитокинетических пикалагелях эритропоэза и лейкогранулопоэза у собак на протяжении трехлетнего хронического радиационного воздействия в малых дозах (наша обработка данных А.В. Илюхина и др.)
Показатель
Эритропоэз
Лейкогранулопоэз
Увеличение
Снижение
Увеличение
Снижение
Число клеток в периферической крови
4-12 (ре-
тикуло-
циты)
-
24-36
Период циркуляции клеток в крови
12-24
32
Скорость обновления клеток в крови
24
32
Костно-мозговая продукция зрелых клеток
12-24
36
Качество зрелых клеток
12-36
Число клеток костного мозга общее
28-36
24-36
Скорость обновления клеток костного мозга
28
28-26 (до 2 раз)
То же для отдельных властных форм
24-32
Длительность генерационного цикла
28 (Gi)
28-36 (G..S,
G2)
Костно-мозговой резерв
5-36
Осмотическая стойкость лейкоцитов была сниженной на протяжении последних 2,5 лет наблюдений. В отличие от показателей красной крови, которые нормализовались на протяжении третьего года облучения, в белой крови продолжала к этому сроку нарастать недостаточность миелопоэза. Изменения показателей красной крови в условиях слабого хронического воздействия были менее выраженными и восстанавливались быстрее, явно отдавая приоритет восстановлению эритропоэза. Авторы пишут о возможном дефиците стволовых клеток и их направленной дифференцировке в эритроидном направлении.
Эти заключения авторы подтверждают анализом и непосредственных изменений костного мозга указанных собак. Средняя продолжительность генерационного цикла миелоидных элементов изменялась существенно -- почти в 2 раза. В отличие от цикла эритроидных элементов (где статистически достоверно сокращалась лишь стадия Gi) здесь укорачивались все стадии интерфазы клеточного цикла. С помощью пирогеналовой пробы обнаружили снижение костномозгового резерва гранулоцитов у большинства собак в большинстве сроков исследовании, в то же время не выявлено уменьшение резерва эритроидного ростка.
Таким образом, обобщая данные о состоянии кроветворения в период длительного слабого хронического воздействия радиации п в период отдаленного пострадиационного восстановления после острых и многократных облучений, можно заключить, что наиболее характерным для гемопоэза было явное или скрытое напряжение эритропоэза, в значительной мере определявшее состояние периферической крови и клеточность костного мозга. Значительную роль при этом играет сокращенная продолжительность жизни эритроцитов. Основной вклад в пополнение клеточности костного мозга после экстремальных воздействий вносят процессы пролиферации и дифференцировки морфологически не различимых стволовых клеток костного мозга. Они обладают чрезвычайными потенциями к пролиферации и имеют другие возможности усиления продуктивности отдельных ростков кроветворения.
2. Регуляция размножения и дифференцировки кроветворных клеток
В связи с успехами исследования процессов кроветворения и функциональных возможностей стволовых клеток при использовании метода селезеночных колоний и культур на полутвердых средах и других методов представления о регуляции путей их пролиферации и дифференцировки существенно изменились.
Экспериментально подтвердилось существование единой полипотентной стволовой клетки, способной к дифференцировкам по всем направлениям гемопоэза, включая лимфопоэз (рис. 3). Казалось бы, это непосредственно доказывает правильность исходного положения о конкуренции различных ростков кроветворения за направление дифференцировки стволовой клетки в соответствии с потребностями организма. Однако вопрос оказался значительно сложнее.
Наряду с исходной полипотентной стволовой кроветворной клеткой могут существовать и обладающие стволовыми свойствами предшественники, коммутированные (т. е. ограниченные к выбору направления дифференцировки) предшественники двух типов -- миелопоэза и лимфопоэза. Это первое и главное разделение направлений возможной дифференцировки единой полипотентной стволовой клетки. Как осуществляется регуляция выбора дифференцировки -- в сторону миелопоэза или лимфопоэза, не очень ясно.
Стволовые клетки, коммутированные в сторону лимфопоэза, дифференцируются сначала в общих, а затеи в раздельных предшественников Т- и В-лимфоцитов, из которых через ряд промежуточных стадий образуются Т-лимфоциты (приобретая определенные клеточные рецепторы) и В-лимфоциты (приобретая рецепторы к комплементу, к фрагментам и комплексам иммуноглобулинов и комплексам антиген--антитело). Кроме того, из них образуются плазматические клетки. Лимфопоэз наименее изучен. До сих пор неясно, имеются ли в лимфоцитарном ряду клетки, не способные к пролиферации. Среди лимфоидных клеток трудно определить принадлежность их к пролиферирующему, созревающему или функциональному пулам, так как возможны взаимные перекрытия.
Стволовые клетки, коммутированные в сторону миелопоэза, в дальнейшем через поэтинчувствительные предшественники разделяются на три ростка: эритроцитарный, гранулоцито-макрофагальный и тромбоцитарный.
В эритроцитарном направлении выявлено несколько промежуточных клеток (в том числе и бурстообразующая клетка) между общим предшественником миелопоэза и эритропоэтинчувствительными клетками. Последующие морфологически различаемые клетки относятся к про-эритробласту, трем видам эритробластов, ретикулоциту и зрелому эритроциту. Обычно происходит 5--6 митозов в морфологически различимых клетках, и каждый эритробласт дает 30--60 эритроцитов. Эритробласты теряют способность к делению, как только в клетке накопится 27 нг. гемоглобина. В случае замедления синтеза гемоглобина увеличивается число делений эритробластов. Из одной полипотентной стволовой клетки, начавшей дифференцировку в сторону миелопоэза, может образоваться около 1 млн эритропоэтинчувствительных клеток и около 0,1 млн. клеток -- предшественников гранулоцитов и макрофагов,
Развитие гранулоцито-макрофагального направления миелопоэза проходит на стадии образования клеток, дающих колонии на полутвердых средах (KOEJ, кластерообразующих клеток и предшественников гранулоцитов и моноцитов-макрофагов. Последующие клетки морфологически различимы. Миелобласт нейтрофильный далее дает клетки гранулоцитарного ряда (эсзинофил), нейтрофильного ряда (нейтрофил) и базофильного ряда (базофил тучная клетка).
Монобласт дает моноциты, макрофаги, гистиоциты, купферовы клетки печени и остеокласты. Клетки моноцитопоэтического ряда объединены в систему фагоцитирующих мононуклеаров как способные к фагоцитозу и осуществляющие в норме функции клеточного фагоцитоза. Ранее входившие вместе с указанными клетками в ретикуло-эндотелиальную систему ретикулярные клетки и эндотелиальные клетки исключены из системы фагоцитирующих мононуклеаров как являющиеся лишь факультативными фагоцитами, не имеющими рецепторов для иммуноглобулинов и не способными к иммунному фагоцитозу. Клетки же системы фагоцитирующих мононуклеаров в процессе дифференцировки приобретают рецепторы для иммуноглобулинов и комплемента и становятся способными к активному иммунному фагоцитозу.
Тромбопоэтинчувствительные клетки формируют морфологически различимые клетки: мегакариобласт, проме-гакариоцит и тромбоциты. Для предшественников характерны 4--5 эндомитозов.
Таким образом, по современным данным, клетки костного мозга, способные к делению, можно условно разделить на морфологически различимые клетки, как правило, способные к очень ограниченному числу делений (4-- 8 делений), и на морфологически неразличимые клетки, выявляемые лишь по способности их давать колонии в селезенке облученных мышей или пролиферировать на полутвердых средах (и другими методами), способные к чрезвычайно активной пролиферации. Число делений, которые может совершить полипотентная стволовая клетка, на порядок больше, чем для морфологически различимых клеток. В норме их в костном мозге лишь около 0,5% от числа всех клеток. Однако достаточно сохраниться 0,1% стволовых клеток после сильного радиационного воздействия, чтобы обеспечить восстановление нормального пула стволовых клеток и резкое повышение дифференцировки клеток в последующих отделах.
При нормальном кроветворении абсолютное большинство стволовых клеток находится вне клеточного цикла (период Go или длительный период Gi). Стабильное поддержание величины отдела стволовых клеток обеспечивается небольшой долей клеток, вступивших в митотический цикл. В случае уменьшения отдела стволовых клеток в пролиферацию может вовлекаться вся популяция сохранившихся стволовых клеток. При этом время удвоения популяции стволовых клеток оказывается очень коротким, порядка 15--20 ч. По данным ряда авторов, укорочение или удлинение стадии Gi стволовых клеток соответственно сопровождается пролиферацией (т. е. оставлением в пуле стволовых клеток) или дифференцировкой (т. е. уходом в последующие отделы).
Следовательно, основной вклад в восполнение дефицита клеточности костного мозга вносит пролиферация морфологически неразличимых клеток и потому исследование регуляции их численности и регуляции выбора направления дифференцировки является чрезвычайно важным. К сожалению, в этих вопросах еще очень много неясного.
Как решается для стволовых клеток первый выбор направления дифференцировки (в сторону лимфопоэза или миелопоэза), тоже неясно. По многочисленным данным, в опытах на собаках и обезьянах аллогенная кроветворная ткань вызывала появление огромного количества лимфоцитов, специфически иммунных против реципиента, при полной или частичной блокаде остального кроветворения. Следовательно, возможно переключение части стволовых клеток с эритроидного на лимфоидный путь дифференцировки. Характер дифференцировки кроветворной ткани в условиях трансплантации указывает на конкуренцию миелоидных и лимфоидных клеток за общий предшественник. У полицитемических радиохимер, у которых снижен эритропоэз, ускоряется восстановление лимфопоэза. Приведенные нами данные о существенной задержке пострадиационного восстановления числа лимфоцитов в крови человека в период, когда эритропоэз напряжен, также свидетельствуют о конкурентных отношениях ростков кроветворения. Об этом непосредственно говорит и проведенное нами изучение соотношений в морфологически различаемых клетках разных ростков костного мозга у облучавшихся собак.
Тем не менее, некоторыми учеными предполагается, что направление дифференцировки стволовых клеток или закреплено генетически постоянно, или осуществляется стохастически, в обоих случаях -- независимо от запросов организма. Возможным доказательством этого может служить одно и то же распределение маркерных клеток по разным росткам гемопоэза при изменении общих запросов организма.
В связи с изложенным, вероятно, более правильно считать существование конкурентных отношений между ростками кроветворения за преимущественную продукцию конечных зрелых форм клеток, а не примат дифференцировки полипотентной стволовой клетки в тот или иной росток гемопоэза. При этом влияние дальнодействующей для гемопоэза регуляции с целью реакций па запросы организма в экстремальных ситуациях может осуществляться не только через поэтиподобные регуляторы, но и через микроокружение в локальных участках гемопоэтических тканей, которое может зависеть также от запросов организма. Эритропоэтин для красного ростка и колониестимулирующий фактор для гранулоцитарного ростка стимулируют пролиферацию клеток и укорачивают средний период генерации клеток. При этом удлинение пли укорочение стадии Gi клеточного цикла может определять уход клеток в пролиферацию или дифференцировку (рис. 4). В случае вступления клетки в деление сокращается генерационный цикл и клетка не успевает осуществить дифференцировку. Пролиферация прекращается, как только весь объем микроокружения окажется занятым стволовыми клетками.
Таким образом, исследования реакции отдела стволовых клеток на экстремальные воздействия и пострадиационные изменения гемопоэза позволили показать ряд общих закономерностей в реакции этой системы на экстремальные воздействия п в процессах последующего восстановления.
Влияние запросов организма на гемопоэз осуществляется дальнодействующей регуляцией посредством гуморальных факторов. Поэтому следует кратко рассмотреть отдельные радиационные изменения со стороны эндокринной и других систем организма.
3. Другие проявления отдаленных радиационных последствий в предпатологический период
Обобщение и анализ остаточных и отдаленных последствий воздействия радиации проводились неоднократно. Наряду с изменениями в системе крови, изложенными выше, отмечались последствия и в других системах организма.
К ним в первую очередь необходимо отнести нарушения иммунологической реактивности, проявляемые наиболее четко в снижении устойчивости к инфекционным агентам. Так, устойчивость к живому возбудителю газовой гангрены и его токсину в экспериментах была снижена у мышей через 190 сут., а у крыс -- через 150 сут. после воздействия радиации.
Имеются также данные, что для полного восстановления иммунобиологической реактивности у облученных грызунов необходимы чрезвычайно длительные сроки, составляющие значительную часть всей нормальной продолжительности жизни животных. Это хорошо соответствует изложенным выше данным о длительной задержке восстановления лимфоидной и гранулоцитарной части кроветворения после облучения.
Цикл исследований был выполнен нами на собаках через 190 сут. после окончания многократного воздействия (осуществлявшегося в 2--4 приема на протяжении 2,5--14 мес.) при полном клиническом благополучии животных и гематологических показателях в пределах видовой нормы к моменту исследования. О скрытой неполноценности восстановления крови можно было только предполагать: число лейкоцитов несколько ниже, чем в контроле, фагоцитарная активность лейкоцитов (число фагоцитирующих клеток) и фагоцитарный индекс (количество микробов на один фагоцит) недостоверно выше, а абсолютный фагоцитарный показатель (число введенных в кровь клеток золотистого стафилококка, фагоцитированных лейкоцитами 1 мм3 крови) был на 25% ниже контрольного уровня. Кроме того, у одной из собак при некотором снижении числа эритроцитов обнаружена в 1,75 раза более высокая суммарная продуктивность эритропоэза. Следовательно, отмечалась типичная картина скрытого напряжения гемопоэза, прикрытого стандартными показателями периферической крови в пределах видовой нормы или несущественно отличаясь от нее.
Эффективной проверкой состояния систем организма собак спустя 190 сут. после окончания многократного воздействия радиации являлась реакция на травматическое повреждение и скорость посттравматической регенерации. С этой целью на спину собак в области между лопатками наносили кожную рану путем отсечения кожного лоскута. Рану антисептической обработке не подвергали. Оценивали период времени, необходимый для уменьшения площади раневой поверхности наполовину. Период полурепарации раны у ранее облучавшихся собак был больше, чем у контрольных животных, имея тенденцию к возрастанию с увеличением суммарной дозы облучения. Количество лейкоцитов, участвовавших в фагоцитозе введенного в кровь золотистого стафилококка, у некоторых животных резко увеличилось, в 1,5--2,5 раза превысив исходный уровень. У ранее облучавшихся собак, наоборот, отмечено уменьшение почти в 2 раза исходного и контрольного уровней фагоцитарной активности лейкоцитов. Еще большие различия выявлены в абсолютном фагоцитарном показателе: например, на 21-е сутки после ранения он был равен у контрольных животных 29,8 тыс., а у облученных собак -- 5,5 тыс. микробных тел, фагоцитированных лейкоцитами 1 мм3 крови.
В экспериментах на облученных мышах с закрытым переломом костей голени или стандартной кожной раной также обнаружено замедление посттравматической регенерации, в том числе и в случае, когда животным наносились травмы через месяц после четырехкратного с месячным интервалом облучения в несмертельных дозах. Относительная величина удельного замедления репарации при заживлении костной ткани была больше, чем кожной.
Сниженную устойчивость собак к повторному воздействию радиации наблюдали через 10 мес. после окончания многократного воздействия радиации.
Известно, что изменения со стороны центральной нервной системы могут отмечаться у перенесших лучевое воздействие в течение длительных периодов времени. Более того, со временем они у ряда лиц могут быть более выраженными. У некоторых лиц, подвергавшихся субтотальной рентгенотерапии, явления астенизации прогрессивно нарастали в течение 3--4 лет и в дальнейшем па протяжении 5--7 лет и более перерастали в симптомы органического поражения нервной системы.
К последствиям, для которых характерен длительный латентный период после воздействия радиации, относят дегенеративно-дистрофические и склеротические изменения в различных органах и системах. Атрофические, склеротические и язвенные изменения слизистой желудочно-кишечного тракта, циррозы печени, невросклерозы и др. В.Н. Стрельцова и Ю.И. Москалев относят к неопухолевым формам поздних эффектов действия радиации. О развитии в поздние сроки радиационных функциональных и морфологических изменений эндокринных желез сообщалось в ряде работ. В.В. Шиходыров и соавторы отмечают некоторые различия в реакции ткани на грубое структурное поражение (обычно в критических органах) и на менее выраженное поражение (обычно в некритических органах). В обоих случаях изменения не зависят от характера поврежденного агента.
В первом случае начальным звеном процесса служат некробиотические изменения ткани. Наряду с процессом дистрофии развиваются явления склероза. Разрастание соединительной ткани оценивается вторичным, заместительным процессом в ответ на уменьшение числа клеток паренхимы органа. Определенное значение в развитии упомянутых нарушений имеют изменения кровеносных сосудов.
Во втором случае не возникают первоначальные грубые структурные изменения паренхимы органа. В течение длительного времени отсутствуют какие-либо морфологические повреждения. Происходят постепенное развитие патологического процесса, уменьшение клеточности паренхимы органа и нарастание атрофии и склероза. Изложенные процессы в целом имеют ту же направленность, что и при старении. У облученных животных эти процессы происходят более ускоренно. Так, однотипные изменения в центральной нервно и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.