На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Исследование понятия форма в биологии и векторной геометрии. Математическая модель формообразования и пути познания энергетических процессов в геометрии. Деление отрезка в золотом сечении. Уравнение экспансии как векторная основа формообразования.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 26.09.2014. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Введение

Вторжение (часто необдуманное) человека в природу связано с непониманием законов гармонии живой природы. Формирование экологической культуры должно начинаться с постижения единства и многообразия биологических объектов. Сущность гармонии природы невозможно выявить только в биологических объектах, даже сопровождая их абстрактно-математическими построениями, - можно лишь наблюдая и осмысливая её проявления, подойти к тайнам живой природы: повторение живого объекта в себе подобном. Рассмотрение различных форм, приводящих к взаимосвязанным выводам и на их основе к модели формообразования. Поэтому цель работы: отыскание единства в многообразии, а инструмент исследования математика, позволяющая рассматривать форму как категорию пространства, а, следовательно, область приложения векторной геометрии.
1. Понятие «форма» в биологии и в векторной геометрии

Какое из чудес могло бы с большей силой поразить человеческое воображение, чем появление новой жизни? Пространство, которое только что представлялось ничем, становится яблоком, деревом, человеком. Возникновение нового существа - явление целостное. Любой научный эксперимент измерением и воображением ученого разделяет пространство (форму) и вещество (плоть), в то время как целостность - главное качество жизни. Природа скрыто управляет геометрическим подобием, и восприятие формы человеком тоже обнаруживают геометрическое подобие Геометрическое подобие нужно рассматривать как фундаментальную основу эволюции жизни и метод конструирования ею форм. Поэтому математические законы формообразования неизбежно оказываются на стыке научных дисциплин. Здесь требуется свой специальный язык, и начать нужно с определения понятия «форма». Раскрывая содержание этого понятия, можно толковать его традиционно: поверхность, очерчивающая объем живого существа или растения, но такое определение отдаляет нас от цели исследования: в нем исчезло само явление роста, оно отображает жизнь в чуждых ей категориях не как динамику, а как статику.
Поэтому, чтобы исследовать формообразование, необходимо соединить в понятии «форма» представление о росте, как о процессе энергетическом, и геометрическое его содержание, как «овладение пространством», как «развитие точки начала». Чтобы сделать акцент на геометрическую сущность явления, введем понятие «экспансия» [expansio (лат.) - расширение, распространение]. Пользуясь им, определим форму в живой природе как граничную поверхность замкнутого пространства экспансии
2. Математическая модель формообразования

2.1 Поиск метода исследования

Несколько слов о правомерности описания энергетических процессов на языке геометрии. Возможны 2 пути познания:
1) изучение объекта по физическим, химическим параметрам - погружение исследователя в безграничную сложность структурных иерархий самых различных уровней макро- и микромира, описываемых необозримым числом параметров на различных предметных языках.
2) путь геометрического абстрагирования, где предметом исследования служат только пространственные характеристики структур, хотя и необычные, но ведущие к модели формообразования. Единая математическая модель - представление об экспансии точки начала. В предлагаемой модели пространство понимается как совокупность точек, обладающих равной энергетической потенцией взаимодействия. Радиус взаимодействия отражает двойственность экспансии:
Единство аддитивности и мультипликативности справедливо для отрезков, взаимодействующих род углом р или 0 (прямая линия) и в векторной геометрии для любых углов взаимодействия (0?б?2р). Таким образом, «золотой» векторный треугольник строит класс замкнутых кривых - нетривиальные симметрии, отображающие биологические формы. Из триады золотого сечения можно перейти в пространство симметрий подобий следующим образом.
2.2 От золотого отрезка - к пространству симметрий подобий

2.2.1 Деление отрезка в золотом отношении
Золотое сечение - это закон пропорциональной связи целого и составляющих это целое частей. Классический пример золотого сечения - деление отрезка в среднепропорциональном отношении, когда целое так относится к большей своей части, как большая часть - к меньшей.
За кажущейся простотой операции деления в крайнем и среднем отношении скрыто множество удивительных форм выражения пропорции золотого сечения в мире живой природы. Линейный закон золотого сечения широко распространён как числовая характеристика членений стеблей растений, их расположения на стволе и даже пропорций человеческого тела.
Рассмотрим один из способов деления отрезка в золотом сечении (так решали задачу деления отрезка в крайнем и среднем отношении в древнем Египте и древней Греции): делимый отрезок AD=а (рис. 1) достраивают до двойного квадрата ABCD со стороной AB=а/2. Потом из диагонали DB циркулем отсекают отрезок ВЕ=АВ=а/2. С помощью циркуля переносят отрезок FD = FE = x = 5 ? a / 2. Задача решена: a: x = x: (a - x) = 1.618034…
Рис. 1
Вообще, любой способ деления отрезка в золотом сечении сводится к построению квадрата и двойного квадрата (полуквадрата). Таким образом, в математику приходят числа 2 и 5 (Диагонали квадрата и двойного квадрата). Появление диагонали BD двойного квадрата ABCD и есть появление отношения золотого сечения: сторона, а есть среднее между диагональю BD=5, увеличенной на сторону а/2, и этой же диагональю, уменьшенной на сторону а/2: 1,618…
2.2.2 А-ромб и «живой» треугольник
Изобразим на вертикали отрезок, разделённый в золотом сечении на две неравные части (рис. 2).
Большую часть ещё раз разделим в золотом сечении и так будем распространять золотую цепь до бесконечности в направлении, восходящем от большего к меньшему (аддитивность). В центрах полученных отрезков построим окружности радиусами этих отрезков. До открытия возможности, скрытой в золотом сечении и позволяющей моделировать формы, играющие ключевую роль в ритмах жизни живой природы, остаётся несколько шагов. Введение прямого угла в чертёж преобразовало линейный ряд золотого сечения в пространство симметрий подобий. Для этого отметим предел, к которому стремится убывающий вид (точка N на чертеже). Затем проведём касательные через точку N к проведённым окружностям. Соединив точки касания с центрами соответствующих окружностей, получаем треугольники с прямыми углами. Соединив точку О0 и Л1 (или П1), получим прямоугольный треугольник с аналогичным отношением сторон. В получившихся прямоугольных треугольниках отношение малого катета к большому равно отношению большого катета к гипотенузе. Такой треугольник - треугольник геометрической прогрессии получил в чертеже шесть ориентаций. Полученную фигуру будем называть асимметричным ромбом (А-ромбом); левая и правая части зеркальны, восходящая цепь золотого сечения развита окружностями, а не полуокружностями (что требуется для практического деления отрезка в золотом сечении), что позволяет выявить некоторые отражения образа данного чертежа в формах живой природы. А-ромб не имеет мерности: любой отрезок в структуре А-ромба можно принять за линейную меру длины. Тогда длина любого его элемента есть число n Ф, где n - целые числа, положительные либо отрицательные. Горизонтали, соединяющие точки пересечения окружностей, делят вертикальную ось А-ромба пополам (точка Е), а каждый её отрезок также пополам. Рис. 2 А-ромб.
Угол основания 2б в А-ромбе с точностью до пятого знака совпадает с числом 1,618…
Этот же угол определяет внутримолекулярные связи в молекуле воды: он является углом атомами водорода в молекуле воды (рис. 3).
Рис. 3
Что такое вода? Большую часть всякой живой клетки составляет вода. Клетки почти всегда окружены водной средой: это может быть пресная или морская вода, тканевый сок, плазма, внеклеточная жидкость. Биологическая информация может передаваться чистой водой, а, кроме того, вода может хранить память о биологически активных молекулах, контактировавших с ней и исчезнувших из нее вследствие многократных разбавлений. То есть, в и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.