Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Электрические соединения в радиоэлектронной аппаратуре

Информация:

Тип работы: Лекции. Добавлен: 10.05.2012. Сдан: 2011. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


  КОНСТРУИРОВАНИЕ  РАДИОЭЛЕКТРОННОЙ ГЕОФИЗИЧЕСКОЙ АППАРАТУРЫ
  Development and creation of geophysical instruments. Electric connections in radio electronic apparatus
Тема 9:  ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ
В РАДИОЭЛЕКТРОННОЙ АППАРАТУРЕ
          Боги пекутся  о великом, но малым пренебрегают.
          Марк  Туллий Цицерон. Римский политик и философ. I в. до н.э.
          Хочешь  создать великое, не пренебрегай  малым. Не раз наблюдал, как один паршивый проводник превращал великое творение в аккуратненькую кучку отлично сделанного металлолома.                      

Роберт Тимофеевич Шарло. Уральский геофизик. ХХ в.

     Содержание: 
      Виды электрических соединений. Линии передач (ЛП). Электрически короткие ЛП. Электрически длинные линии передачи. Отражение сигналов в длинных линиях. Согласование электрически длинных ЛП.
      Конструкции сигнальных линий передач. Монтажные провода. Свитая пара. Коаксиальный кабель. Печатные проводники. Электрические параметры объемного монтажа. Разводка ЛП. Волоконно-оптические ЛП.
      Линии электропитания. Виды линий. Падение напряжения на линиях. Развязывающий конденсатор.
      Конструирование заземления.
      Электрические контакты. Виды соединений. Выбор электрических соединителей.
9.1. Виды электрических соединений [2]
      Линии передач (ЛП). Под электрическими соединениями понимают линии передачи (ЛП) и электрические контакты, служащие для передачи сигналов и электрической энергии между МС, радиодеталями и модулями, образующими РЭА. Электрические соединения бывают внутри- и межмодульными, внутри- и межблочными и т. п., что обусловливает их конструктивное исполнение.
      По  выполняемым функциям различают  сигнальные ЛП, объединяющие входы  и выходы элементов и модулей  и предназначенные для передачи сигналов, и ЛП электропитания, осуществляющие подвод электрической энергии к элементам. Все ЛП имеют прямой и обратный провод. Обратный провод называют землей, линией нулевого потенциала, общим проводом. Выделяют неэкранированные и экранированные ЛП. Экраны обеспечивают защиту линий от воздействия электрических, магнитных и электромагнитных полей. В зависимости от конструктивных особенностей обратного провода ЛП подразделяют на симметричные, состоящие из двух одинаковых изолированных проводов, несимметричные с одним общим проводом для многих ЛП, и коаксиальные, с обратным проводом по оплетке коаксиального кабеля.
      В общем случае, линии передачи должны обладать:
    минимальным активным и индуктивным сопротивлениями;
    однородным по длине линии волновым сопротивлением;
    минимальным полем вокруг линии при протекании по ней тока;
    способностью передачи сигналов в широком диапазоне частот, токов и напряжений;
    минимальной толщиной изоляции с диэлектрической проницаемостью, близкой к 1;
    способностью к объединению в узлы;
    способностью к автоматизации при проведении монтажных работ.
      Универсальных ЛП, удовлетворяющих всем требованиям одновременно, не существует. В   реальных конструкциях применяют разнообразные типы ЛП в зависимости от назначения и функциональных особенностей аппаратуры. На выбор типа ЛП влияют форма передаваемых сигналов, их напряжение и частота, ослабление сигнала на единицу длины линии, механическая гибкость, технологические требования и другие факторы.
      Радиоэлектронные  устройства содержат разнообразные по выполняемым функциям элементы и модули, отличающиеся характером обрабатываемых сигналов, их мощностью, частотой и пр. При передаче электрических сигналов по ЛП происходит искажение формы и спектра сигналов, их затухание. Искажение сигнала определяется степенью рассогласования параметров электронных схем с параметрами ЛП, взаимным влиянием расположенных по соседству ЛП, задержкой сигналов в ЛП. Выбор конструктивно-технологического варианта исполнения электрических соединений - важная и сложная задача, влияющая на качество проектируемой РЭА.
      Электрический сигнал передается по проводнику тока, которым является металлическая проволока (провод), пленочные и печатные проводники. В поперечном сечении провода бывают круглыми или прямоугольными, пленочные и печатные проводники - прямоугольными. Провода защищаются изолирующими диэлектрическими оболочками, а при необходимости - экранами. По волноводам и волоконно-оптическим ЛП передается электромагнитная энергия радиочастотного (волновод) и светового (световод) диапазонов.
      
Рис. 9.1.1.
      Для повышения производительности труда  при сборке РЭА и упрощения электромонтажных работ ЛП объединяют конструктивно-технологически в узлы (рис. 9.1.1), состоящие, например, в жгутах из нескольких десятков линий.
      Линии электропитания представляют собой  объемные провода, пленочные и печатные проводники, либо проводящие пластины. Конструктивное исполнение сигнальных ЛП более разнообразно и во многом определяется частотным диапазоном передаваемых сигналов.
      Все сигнальные линии связи разделяют на электрически длинные и электрически короткие, характер искажения сигналов в которых различен.
      Электрически  короткой называют ЛП, длина которой для гармонического сигнала определяется по выражению
lk = c/(f
),

где а - частота сигнала, с - скорость света, e - относительная диэлектрическая проницаемость среды, окружающей линию передачи.
      Расчет  ЛП для импульсных сигналов проводится на гармонику наибольшей частоты, значение которой приближенно равно а = 0.4/tф, где tф - значение фронта сигнала на уровне 0,1 и 0,9 амплитуды сигнала.
      
Рис. 9.1.2.
      Электрически  короткие ЛП. При анализе электрических процессов короткую ЛП моделируют эквивалентной схемой, состоящей из емкости и индуктивности ЛП, сосредоточенными в одной точке (рис. 9.1.2-б). Активным сопротивлением линии пренебрегают. Модуль 1, формирующий сигнал, представляется источником напряжения U с последовательно включенным сопротивлением R1. Модуль 2 является приемником сигнала и моделируется входным сопротивлением R2.
      При R2 >> R1 эквивалентную схему индуктивно-емкостной короткой  линии совместно с сопротивлением R1 можно представить резонансным контуром, в котором могут возникнуть колебания с частотой:
f = (1/2p)
.

      В результате колебательного процесса напряжение на входе схемы 2 может многократно пересечь порог ее срабатывания и вызвать многократное изменение ее логического состояния. Если колебания в ЛП прекратятся за минимальное время длительности фронта передаваемого по линии сигнала, то они не окажут влияния на работоспособность аппаратуры. Условие отсутствия колебаний в линии выполняется при L ? CR12/4. В этом случае индуктивностью линии можно пренебречь (в).
        Реакция емкостной ЛП (в) на синусоидальный сигнал будет проявляться в уменьшении амплитуды выходного напряжения и сдвиге фазы выходного сигнала относительно входного. В общем случае сигналы на входе и выходе ЛП могут существенно отличаться. Если ЛП нагружается на пороговые схемы, то при подаче на вход ЛП прямоугольного импульса амплитудой U время срабатывания схемы задерживается на величину:
tср = t|ln(1-Uпор/U|,
где t = R1С - постоянная времени, Unop — пороговое напряжение логического элемента 2. Если длительность импульса много больше t, то ЛП передаст импульс практически без искажений. В противном случае линия передачи будет себя вести подобно интегрирующей RC-цепи, занижая амплитуду импульса и сглаживая его фронты.
      Перекрестные  помехи обусловлены электрическим, магнитным и электромагнитным взаимодействием расположенных по соседству ЛП. Микроминиатюризация и увеличение плотности упаковки проводников ставят перед конструктором важную задачу уменьшения помех до уровней, не влияющих на точную и надежную работу аппаратуры. Уровень помех зависит от взаимной индуктивности проводников и межпроводниковой емкости, создавая соответственно индуктивную и емкостную составляющие взаимных помех. Емкостная составляющая возрастает с ростом скорости изменения напряжения на входе ЛП и величин сопротивлений на концах линии, индуктивная помеха - с ростом скорости изменения тока в линии и увеличением числа нагрузок на выходе активной линии.
      Снизить значение паразитной емкости между  ЛП можно уменьшением длины совместного параллельного расположения проводов на минимально возможном расстоянии друг от друга, увеличением зазора между ними, укладыванием проводов, передающих различные по уровням сигналы, в отдельные жгуты, приближением ЛП к земле, введением экранированных проводов, использованием коаксиальных кабелей. Например, заземление оплетки коаксиального кабеля позволит целиком избавиться от емкостной помехи. Ослабить взаимную индуктивность можно за счет разнесения ЛП возможно дальше друг от друга, уменьшением площадей контуров, образуемых проводами, по которым протекают прямые и обратные токи ЛП, использованием экранированных проводов, свитых пар, коаксиальных кабелей.
      Электрически  длинные линии передачи. Хотя параметры линии являются распределенными вдоль ее длины, на эквивалентной электрической схеме ЛП их аппроксимируют сосредоточенными на малых фрагментах линии (рис. 9.1.3), где R, L, С - погонные (на единицу длины) сопротивление, индуктивность, емкость.
      
Рис. 9.1.3.
      Важнейшей характеристикой электрически длинной  ЛП является ее волновое сопротивление Z0.. Волновое сопротивление – это сопротивление линии электромагнитной волне при отсутствии отражений от концов линии. Оно зависит от первичных электрических параметров кабеля и частоты сигнала. Если электромагнитную волну представить в виде раздельных волн напряжения и тока, то соотношение между ними и представляет собой волновое сопротивление цепи: Z0 = U/I. Волновое сопротивление является комплексной величиной и состоит из активной и реактивной части. Зависимость волнового сопротивления от частоты повышается в области низких частот и имеет емкостной характер (2pfL<<R). В области высоких частот имеет место 2pfL > R, 2pfC >> (1/R) и значение волнового сопротивления стремится к постоянной величине , которое и принимается за значение Z0.
      Отражение сигналов в длинных  линиях. При передаче сигналов по длинным линиям важно согласовать сопротивление нагрузки с волновым сопротивлением линии. В несогласованной линии одновременно присутствует прямая (падающая) волна, распространяющаяся от начала линии к ее концу, и отраженная от нагрузки обратная волна, передающаяся от конца линии к ее началу. Отношение амплитуды напряжения Uo отраженной от нагрузки R волны к амплитуде Uп падающей волны определяется коэффициентом отражения:
ro = Uo/Uп = (R-Z0)/(R+Z0).
      Отраженная  волна распространяется от конца  линии к началу (с определенной потерей энергии на Z0), через определенное время задержки tз достигает начала линии, и точно также отражается от выходного сопротивления источника сигнала. Значение скорости распространения волн на высоких частотах стремится к постоянной величине u = 1/ , и, соответственно, tз = . На низких частотах, где преобладает емкостной характер линии, время задержки может увеличиваться в 1.5-2 раза.
      Если  сопротивление в начале и конце  линии соответственно R1 и R2 и соблюдается отношение R1 < Z0 < R2, то коэффициенты отражений на входе ro1 и выходе ro2 линии соответственно будут 0 > ro1 > -1 и 0 < ro2 < 1.
      
Рис. 9.1.4.
      Искажение импульсного сигнала, когда длительность передаваемого импульса tи << tз, при прохождении его по ЛП показано на рис. 9.1.4. Сигналы на графиках соответствуют моментам их поступления на вход U1 и выход U2 ЛП. Следует обратить внимание на изменение полярности отражаемых сигналов в зависимости от соотношения величин R1 и R2 с величиной Z0. Таким образом, на вход линии поступил один импульс, а на входе нагруженной на линию МС с периодом 2tз может оказаться несколько импульсов, превышающих порог ее срабатывания.
      Согласование  электрически длинных  ЛП. Уменьшения или полного исключения отражений в длинных линиях можно добиться их согласованием. Линия передачи считается согласованной, если сопротивление, на которое она нагружена, равно волновому сопротивлению линии, при этом значение ro2 становится равным нулю. Рекомендуется также проводить согласование линии и с источником сигнала, если его выходное сопротивление  R1 много меньше Z0, что обнуляет значение ro1. Согласование обеспечивается введением согласующих резисторов Rc на входах и выходах ЛП. Для источников сигналов с малым выходным сопротивлением применяют последовательное согласование с ЛП (R1+Rc ® Z0), на приемниках сигналов с высоким входным сопротивлением – параллельное согласование (R2 || Rc ® Z0). При большем количестве нагрузок на выходе ЛП для согласования используют эмиттерные повторители (см. рис. 9.1.5, в).
      
Рис. 9.1.5.
      При конструировании цифровой аппаратуры входы триггеров, одновибраторов, регистров не рекомендуется подключать непосредственно к длинным линиям. Отсутствие буферных каскадов из-за значительной емкостной нагрузки и наличия отражений приведет к неустойчивой работе аппаратуры. В качестве буферных каскадов для восстановления фронтов импульсов обычно используются триггеры Шмитта. Аналогично буферные каскады рекомендуется использовать и для согласования коаксиальных кабелей с волновым сопротивлением 50 Ом, при этом выход кабеля нагружается на сопротивление 51 Ом.
      В зависимости от специфики разрабатываемой  аппаратуры в качестве длинных линий  используют микрополосковые и полосковые печатные проводники, свитую пару, плоский кабель, коаксиальный кабель. При высоком уровне внешних для ЛП электромагнитных помех рекомендуется применение коаксиальных кабелей и свитых пар с формированием разнополярных сигналов на обоих проводах пары.
      Высокочастотный переменный или импульсный ток неравномерно распределяется по сечению проводника, имея наибольшую плотность у его поверхности, что является результатом проявления поверхностного эффекта. Поверхностный эффект увеличивает сопротивление проводника переменному току. Влияние поверхностного эффекта сказывается на искажении фронта и формы импульса, так как разные частоты затухают в материале проводника неодинаково. Для ослабления влияния поверхностного эффекта используют провод, свитый из большого числа изолированных друг от друга жил и.
      Для устранения перекрестных помех линии передачи экранируют. Применение ЛП с экранирующей металлической оболочкой является эффективным способом ее защиты от воздействий электрического и электромагнитного полей. Экраны необходимо заземлять короткими проводами минимального индуктивного сопротивления либо путем непосредственного контакта с корпусом прибора. Отсутствие заземления экранов ЛП не устраняет емкостную связь между центральными проводами. Если ток, протекающий по центральному проводу ЛП, равен обратному току через его оплетку, то в пространстве, окружающем линию, электромагнитное поле отсутствует.
9.2. Конструкции сигнальных ЛП [2]
      Монтажные провода. Материалом токопроводящих жил проводов являются медь и ее сплавы. С уменьшением габаритов аппаратуры, уменьшением длин и диаметров монтажных проводов, а также ужесточением требований механических воздействий, все большее применение стали находить медные сплавы, обладающие более высокой прочностью на разрыв и гибкостью при небольшом ухудшении проводимости.
      Монтажные провода бывают одно- и многожильными. Высокая гибкость, долговечность и надежность провода в условиях воздействий ударов и вибраций обеспечивается свиванием нескольких одиночных проводов в многожильный. Промышленность выпускает многожильный провод на 3, 7, 12, 17, 19, 27 и 37 круглых жил. Многожильный провод с суммарной площадью поперечного сечения токопроводящих жил, равной площади поперечного сечения одиночного провода, имеет несколько больший диаметр и стоимость, которые возрастают с увеличением числа жил. Повышение механической прочности многожильных проводов достигается введением в конструкцию провода центральной упрочняющей стальной жилки.
      Защиту  от электрического замыкания провода  на корпус изделия или на соседний провод осуществляют нанесением на токопроводящую жилу изоляционного покрытия. Материал и конструкция изоляции должны обеспечивать высокие значения электрических параметров (диэлектрическую прочность, сопротивление изоляции, диэлектрическую постоянную) в процессе и после приложения внешних воздействий, а также после длительного хранения. В настоящее время существует большое разнообразие различных типов изоляционных покрытий.
      Провод  выбирают исходя из требуемых условий  эксплуатации, нагрузки по току, допустимого падения напряжения, утечки тока, диэлектрической прочности. Одножильные провода рекомендуется использовать в стационарной аппаратуре, не подверженной воздействиям ударов и вибраций. Увеличение числа жил провода повышает его стойкость к многократным перегибам в условиях воздействий вибраций. Многожильные провода применяют в бортовой аппаратуре.
      Можно рекомендовать следующий размерный  ряд сечений токопроводящих жил  монтажных проводов: 0,03; 0,05; 0,08; 0,12; 0,20; 0,35; 0,50; 0,75; 1,0; 1,5; 2,5 мм2. Выбор диаметра провода зависит от протекающего тока и допустимого перегрева провода. Плотности тока для различных диаметров проводов при длительных допустимых токовых нагрузках, приводящих к перегреву провода на 20 °С относительно окружающей среды, приведены в таблице.
       Допустимые  токи нагрузки медных проводов
Электрический параметр Диаметр, мм
  0,25 0,35 0,5 0,7 0,9 1,1 1,4 1,6 1,8 2,5
Плотность тока, А/мм2 14 13 12 10 10 10 9 9 8 8
Ток, А 0,7 1,3 2,5 4 7 10 14 17 20 30
         Из  данных этой таблицы следует, что  для проводов малых диаметров имеют место большие плотности токов за счет более активного теплообмена с окружающей средой.
      Ниже  в таблице приведены марки широко используемых монтажных проводов.
Марки монтажных проводов
Провод монтажный Марка Темп.,°С Область применения
С волокнистой  и полихлорвиниловой изоляцией МШВ, МГШВ, МГШВЭ  -60/+70 Фиксированный внутри- и межприборный монтаж устройств  для полевых условий
С полихлорвиниловой  изоляцией МГВ, МГВЭ, МГВЛ, ПМВ, ПМОВ, ПМВГ -60/+70 Фиксированный монтаж слаботоковой аппаратуры
С лавсановой изоляцией, теплостойкий МГТЛ, МГТЛЭ -60/+150 Фиксированный и гибкий внутриприборный монтаж
Малых сечений  МГТФ, МГСТФ, МГТФЭ -60/+70 Монтаж слаботоковой аппаратуры
С полиэтиленовой изоляцией повышенной теплостойкости ПМП, ПМПЭ, ПМПЛ -60/+220 Внутри- и межприборный монтаж
      Свитая  пара. Свитую пару получают переплетением между собой с определенным шагом двух изолированных проводов. При свивании проводов снижаются электромагнитные связи между цепями и повышается их защищенность от взаимных и внешних помех. Благодаря свиванию проводов вместо одного контура связи получается как бы несколько одинаковых по площади малых контуров, при этом наводимые внешним электромагнитным полем токи помех, имеющие в свитой паре противоположное направление и взаимно компенсирующиеся.
      Для ЛП с диаметром жил 0,9-1,2 мм шаг свивания должен быть 100-300 мм, для диаметров 0,3-0,8 мм шаг выбирают в пределах 40-90 мм. Для различных шагов свивания коэффициенты ослабления помех составляют следующие значения:
      Шаг свивания, мм .............................  100      75       50      25.
      Коэффициент ослабления, дБ ..........    23      37       41      43.
      Индуктивность свитой пары ниже, чем индуктивность  несимметричной двухпроводной ЛП. Волновое сопротивление свитой пары вычисляется по формуле:
Z0 = 276 lg(2dи/d) /
,

где eв, eи - относительная диэлектрическая проницаемость воздуха и изоляции проводов, dи и d - диаметр провода с изоляцией и без изоляции.
      Свитая  пара обеспечивает хорошую защиту передаваемых сигналов от влияния электромагнитных помех до частоты 100 кГц и удовлетворительную до частоты 10 МГц, гарантируя при этом постоянство волнового сопротивления.
      Коаксиальный  кабель. Улучшение помехозащищенности ЛП в высокочастотной аппаратуре обеспечивается применением коаксиальных кабелей. Коаксиальный кабель является двухпроводной ЛП, состоящей из внешнего трубчатого проводника (оплетки), внутри которого соосно размещается провод, разделенный диэлектрической средой от оплетки.
      Промышленность  выпускает коаксиальные кабели с  волновым сопротивлением от 50 до 3200 Ом и номинальным диаметром от 0,6 до 120 мм. Марка кабеля указывает на его тип, волновое сопротивление, диаметр, группу изоляции и нагревостойкости, порядковый номер разработки. Например, марка кабеля РК-50-4-11 означает, что это радиочастотный кабель с волновым сопротивлением 50 Ом, диаметром 4 мм, обычной нагревостойкости 1 с порядковым номером разработки 1 .
      Коаксиальный  кабель используют для передачи разнообразных  сигналов в широком частотном диапазоне. Постоянство электрических параметров, высокая защищенность от электрических и электромагнитных полей обусловливает широкое использование коаксиальных кабелей.
      При межприборной коммутации низкочастотной аппаратуры оплетка коаксиального  кабеля для предотвращения появления  контуров заземления заземляется на одном конце через выводы электрического соединителя. Оплетка кабеля высокочастотной аппаратуры соединяется с линией нулевого потенциала в нескольких точках через интервал 0,25 l, где l - длина волны передаваемого сигнала на самой высокой частоте. При протекании значительных токов по линии нулевого потенциала многоточечное заземление кабеля теряет свою эффективность.
      В таблице приведены основные марки коаксиальных кабелей.
Кабель Марка Темп., °С Область применения
Радиочастотные  со сплошной изоляцией РК-50-2, РК-75-4,РК- 100-7, РК-50-9, РК-75-9
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.