На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Изучение понятия, классификации, свойств математических моделей. Особенности работы с функциями, переменными, графикой, программированием (интерполяция, регрессия) в системе MathCad. Проведение алгоритмического анализа задачи и аппроксимация результатов.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 15.02.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Содержание
Введение
1 Математическое моделирование технических объектов
1.1 Понятие математической модели
1.2. Понятие математических моделей, их классификация и свойства
1.3 Функции системы MathCAD
1.4 Переменные в MathCAD
1.5 Решение уравнений с использованием функции FIND, MINER
1.6 Исследование функций на экстремум
1.7 Графики в MathCAD
1.8 Учет размерности
1.9 Программирование в MathCAD
1.10 Обработка экспериментальных данных
1.10.1. Интерполяция
1.10.2 Функции регрессии
1.11 Интернет технологии
1.12 Описание Web-сайта
2 Алгоритмический анализ в задаче
2.1 Исходные данные задачи
2.2 Постановка задачи
2.2.1 Графическая схема алгоритма
2.2.2 Схема сайта
3 Описание документа MathCad
3.1 Система MathCad
3.2Таблица используемых переменных
4. Необходимые исследования зависимостей в MathCad
5. Аппроксимация
6 Вывод по проделанным исследованиям
Заключение
Список литературы
Приложения 1
Приложения
Введение
Изобретение и дальнейшее развитие персонального компьютера значительно упростило жизнь человека.
Технологический скачок последнего десятилетия позволило разработать серию современных персональных компьютеров. Микро ЭВМ постепенно начали входить в нашу повседневную жизнь. Компьютерные и информационные технологии уверенно входят в нашу жизнь.
Персональная ЭВМ давно превратилась в предмет труда. Ни одно предприятие не обходится без электронной базы данных, без современных средств коммуникаций, мощных вычислительных средств. Он позволяет осуществлять не только производственный процесс на дому, но и целый ряд всевозможных процессов.
Огромный вклад в этот рост внесло развитие технологии математического моделирование.
Моделировaние это изучение объектa путем построения и исследования его модели, осуществляемое с определенной целью и состоит в зaмене экспериментa с оригинaлом экспериментом нa модели.
Модель должна строится так, чтобы она наиболее полно воспроизводила те качества объекта, которые необходимо изучить в соответствии с поставленной целью. Во всех отношениях модель должна быть проще объекта и удобнее его для изучения. таким образом, для одного и того же объекта могут существовать различные модели, классы моделей, соответствующие различным целям его изучения.
Абстрактное моделирование связано с построением абстрактной модели. Такая модель представляет собой математические соотношения, графы, схемы, диаграммы и т.п. Наиболее мощным и универсальным методом абстрактного моделирования является математическое моделирование. Оно широко используется как в научных исследованиях, так и при проектировании.
Математических моделей позволяет осуществить предварительный выбор оптимальных или близких к ним вариантов решений по определенным критериям. Они научно обоснованы, и лицо, принимающее решение, может руководствоваться ими при выборе окончательного решения. Следует понимать, что не существует решений, оптимальных "вообще". Любое решение, полученное при расчете математической модели, оптимально по одному или нескольким критериям, предложенным постановщиком задачи и исследователем.
В курсовой работе я исследую математическую модель зависимости диаметра и максимального прогиба балки под действием внешних нагрузок. Математическая модель составляется в MathCad, где получатся графики зависимости силы и момента, и в результате анализ данной задачи.
1 Математическое моделирование технических объектов
1.1 Понятие математической модели
Моделирование представляет собой процесс замещение объекта исследования некоторой его моделью и проведение исследование на модели с целью получения необходимой информации об объекте.
Математическое моделирование позволяет посредствам математических символов и зависимостей составить описание функционирования технического объекта в окружающей внешней среде, определить выходные параметры и характеристики, получить оценку показателей эффективности качества, осуществить поиск оптимальной структуры и параметров объекта. Применение математического моделирования при проектировании в большинстве случаев позволяет отказаться от физического моделирования, значительно сократив объемы испытаний. Также математическим моделированием называют процесс формирования математической модели для анализа и синтеза. В качестве математических объектов выступают числа, переменные, множества, векторы, матрицы и так далее.
В конструкторской практике под математическим моделированием обычно понимается процесс построения математической модели.
1.2 Понятие математических моделей, их классификация и свойства
Модель - это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.
Математическая модель - это совокупность математических объектов и отношений между ними, адекватно отображающая физические свойства технического объекта.
На различных этапах и стадиях проектирования сложной технической системы используют различные математические модели. Математические модели могут представлять собой системы дифференциальных уравнений, системы алгебраических уравнений, простые алгебраические выражения, бинарные отношения, матрицы и так далее. Уравнение математической модели связывают физические величины.
К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Модель считается адекватной, если отражаются исследуемые свойства с приемлемой точностью.
Математические модели технических объектов, используемые при проектировании, предназначены для анализа процессов функционирования объектов и оценки их выходных параметров. Они должны отражать физические свойства объектов, существенные для решения конкретных задач проектирования. При этом математическая модель должна быть как можно проще, но в то же время обеспечивать адекватное описание анализируемого процесса.
Используют следующие виды математических моделей: детерминированные и вероятностные, теоретические и экспериментальные факторные, линейные и не линейные, динамические и статистические, непрерывные и дискретные, функциональные и структурные.
По форме представления математических моделей различают:
1. Инвариантная модель - математическая модель представляющаяся системой уравнений (дифференциальных, алгебраических), вне свези с методом решения этих уравнений.
2. Алгебраическая модель - соотношение моделей связаны с выбранным численным методом решения и записаны в виде алгоритма (последовательности вычислений).
3. Аналитическая модель - представляет собой явные зависимости искомых переменных от заданных величин. Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.
4. Графическая модель - представляется в виде графиков, эквивалентных схем,
динамических моделей, диаграмм и тому подобное. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математической модели.
Математические модели могут представлять собой функциональные зависимости между выходными, внутренними и внешними параметрами.
Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта.
Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Такие модели имеют форму таблиц, матриц и графиков. Они наиболее широко используются на метоуровне при выборе технического объекта.
Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Их широко используют на всех иерархических уровнях, стадиях и этапах при функциональном, конструкторском и технологическом проектировании.
По способам получения функциональные математические модели делятся на:
1. Теоретические модели - получают на основе описания физических процессов функционирования объекта.
2. Экспериментальные модели - получают на основе поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик".
При построении теоретических моделей используют физический и формальный подходы. Физический подход сводится к непосредственному применению физических законов для описания объектов. Формальный подход используется при построении как теоретические, так и экспериментальные модели.
Функциональные математические модели могут быть:
1. Линейные модели, содержащие только линейные функции фазовых переменных и их производных.
2. Нелинейные математические модели, включающие в себя нелинейные функции фазовых переменных и их производных.
Если при моделировании учитывается инерциальные свойства технического объекта и (или) изменение во времени параметров объекта или внешней среды, то модель называют динамической. В противном случаи модель статическая. Выбор динамической или
статической модели определяется режимом работы технического объекта. Математическое представление динамической модели в общем случаи может быть выражено системой дифференциальных уравнений, а статической - системой алгебраических уравнений. Динамическая модель может также представлять собой интегральные уравнения, придаточные функции, а в аналитической форме - явные зависимости фазовых координат или выходных параметров технического объекта от времени.
1.3 Функции системы MathCAD
Встроенные функции системы:
MathCAD содержит более двухсот встроенных функций. Все они разбиты на группы. Для вставки стандартной функции необходимо на панели инструментов щелкнуть по кнопке f(x)- вставить функцию. Раскроется новое окно, в котором в левом списке будут представлены группы функции, а в правом - сами функции. Необходимо выбрать из списка нужную функцию и щелкнуть по кнопке "вставить"- Insert.
Основные встроенные функции:
1. тригонометрические функции [sin(x), cos(x), tan(x), cot(x), csc(x)];
2. гиперболические [sinh(x), cosh(x), tanh(x), coth(x), csch(x), sech(x)];
3. обратные тригонометрические [asin(x), acos(x), atan(x) и т.д.];
4. обратные гиперболические [asinh(x), acosh(x) и т.д.];
5. показательные и логарифмические[exp(x), ln(x), log(x), ].
Функции пользователя в MathCAD.
ользовательские функции применяются если одно и то же выражение должно быть рассчитано несколько раз для разных наборов исходных данных.
Формат записи функции пользователя:
<ИФ>(<СП>):=<Выражение>
где <ИФ> - имя функции (задается как любой идентификатор разрешенный системой);
(<СП >) - список параметров (в скобках через запятую указывается список функции);
<Выражение> - содержит доступные системе операторы и функции с аргументом указанным в списке параметров.
1.4 Переменные В MathCAD
Переменными в MathCAD называются объекты, имеющие некоторые значения, которые могут меняться в процессе вычисления.
В MathCAD различают три вида переменных:
1. Простые переменные в MathCAD используются в качестве операндов при выполнении операций сложения, вычитания, умножения, деления, возведения в степень, а также в качестве аргументов встроенных математических функций, при вычислении арифметических выражений и в операциях отношения.
Для определения переменной необходимо ввести имя переменной, затем знак : = далее присваиваемое значение или выражение.
Этап определения переменных должен быть по ходу вычислений выше, чем этап вычислений. Однако при определении глобальных переменных нет разницы в их местоположении. Для таких переменных необходимо вводить знак глобального присваивания .
2. Ранжированные переменные берут свои значения из диапазона с заданным шагом и изменяются от начального значения до конечного. Формат записи ранжированными переменными:
<ИП> : = <НЗ>,[<СЗ>]..<КЗ>
где ИП- имя переменной;
НЗ- начальное значение переменной;
CЗ- первое следующее за начальным значение переменной;
КЗ- конечное значение переменной;
[ ]- данный параметр может отсутствовать. В этом случае шаг изменения переменной будет равен единице.
3. Индексированные переменные - это известные нам массивы (матрицы).
Доступ к каждому элементу массива происходит при указании имени массива и порядкового номера элемента (индекса) в данном массиве.
Для задания массива необходимо:
1) ввести имя массива;
2) вести знак присвоить;
3) вызвать панель с матричными операторами;
4) щелкнуть по шаблону матрицы;
5) ввести количество столбцов и строк матрицы;
6) ввести значение элементов матрицы.
По умолчанию нумерация строк и столбцов в матрицах, массивах и векторах начинается с нуля, т.е. первый столбец имеет номер 0 и т.д.
Для того чтобы измерение начиналось с единицы необходимо в самом начале документа MathCAD встроенной переменной, отвечающей за нумерацию строк и столбцов присвоить значение 1:
ORIGIN:=1
Каждая переменная имеет свое имя (идентификатор). Имя переменной - это набор из букв, цифр или иных символов системы, обязательно начинающихся с буквы.
1.5 Решение уравнений с использованием функции "FIND", "Minerr"
Для решения необходимо:
1)задать начальное приближение переменной;
2)ввести ключевое слово GIVEN;
3)записать решаемое уравнение;
4)ввести функцию find с неизвестными в качестве параметров.
Функция find возвращает только один корень, поэтому для нахождения всех корней необходимо построить график функции и исходя из него выбрать начальное приближение для каждого из корней.
Если уравнение не имеет точного решения, например: график функции не пересекается с осью абсцисс, можно найти значение при котором невязка будет минимальна(в случае двух уравнений минимальным будет расхождение между двумя кривыми). Для этого используется функция Minerr. Обращение к функции Minerr аналогично обращению к функции find. Только функция find даёт точное решение а Minerr- приближённое. Если точное решение существует, то функция Minerr позволяет его найти также как и функция find. Если точного решения нет, то функция find указывает на ошибку а Minerr находит значение с минимум невязки.
1.6 Исследование функций на экстремум
При помощи функций Maximize и Minimaze можно вычислить экстремумы непрерывной функции.
Поиск экстремума функции можно проводить двумя методами:
1) Приравнивать производную к нулю;
2) Используя функции Minimize, Maximize.
Отметить экстремальные точки нужно следующим образом : войти в режим форматирования графика и в появившихся местах ввода на оси Х и У ввести полученные значения.
1.7 Графики в MathCAD
Пакет MATHCAD предоставляет широкие графические возможности. Кроме того, здесь можно использовать чертежи и рисунки, полученные в других графических системах.
Нажатием буквально одной кнопки можно задать шаблон для генерации двумерного графика, причем в одних и тех же осях может быть несколько графиков одновременно. В MATHCAD`e представлены следующие виды графиков: декартовый (X-Y plot), полярный (Polar plot), поверхности (Surface plot), карта линий уровня (Contour plot), векторное поле (Vector Field plot), трехмерный точечный (3D Scatter plot), трехмерная столбчатая диаграмма (3D Bar Chart). Все графики являются стандартными объектами MATHCAD`a: их можно редактировать, а при пересчете исходных данных они автоматически перерисовываются. Кроме того, в средствах `объемной' визуализации данных существуют возможность композиции задних планов. Существуют большое количество опций для работы с осями, а также возможность импортировать графические изображения.
Построение двумерных графиков:
Перед построением графика необходимо определить исследуемую функцию и аргумент, заданный в виде диапазонной или индексированной переменной, а затем:
1) установить курсор в место, где будет построен график;
2) на панели Graph выбрать кнопку двумерный график и кнопку xy;
3) в появившемся на месте курсора шаблоне двумерного графика необходимо ввести на оси абсцисс по центру в черном квадрате имя аргумента, а на оси ординат - имя функции;
4)щелкнуть мышью вне шаблона графика.
1.8 Учет размерности
В MathCAD встроено большое количество единиц измерения. С ними можно обращаться как со встроенными переменными. Чтобы связать единицу измерения с числом, необходимо умножить это число на наименование единицы измерения. Перед началом работы с единицами измерений необходимо установить систему размерности. В Ma и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.