На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Методи ршення задач математичної статистики, яка вивчає статистичн закономрност методами теорї ймоврностей за статистичними даними - результатами спостережень, опитувань або наукових експериментв. Способи збирання та групування статистичних даних.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 13.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Математична статистика
(реферат)
1. Задачі математичної статистики

Математична статистика як наука вивчає статистичні закономірності методами теорії ймовірностей за статистичними даними результатами спостережень, опитувань або наукових експериментів.
Математична статистика розв'язує дві основні задачі.
Перша задача математичної статистики - вказати способи збирання та групування статистичних даних.
Друга задача математичної статистики - розробити методи аналізу статистичних даних у залежності від мети дослідження. Сюди відносяться:
а) оцінка невідомої ймовірності; оцінка невідомої функції розподілу; оцінка параметрів розподілу, вигляд якого відомий; оцінка залежності випадкової величини від однієї або декількох випадкових величин та інші;
б) перевірка статистичних гіпотез про вигляд невідомого розподілу або про величину параметрів розподілу, якщо він відомий.
Сучасна математична статистика розробляє способи визначення кількості експериментів до початку дослідження (планування експерименту), під час експерименту (послідовний аналіз) і розв'язує багато інших задач.
Отже, математична статистика вивчає методи збирання та обробки статистичних даних для одержання наукових та практичних висновків.

2. Генеральна та вибіркові сукупності

Нехай необхідно вивчити сукупність однорідних об'єктів відносно деякої ознаки (кількісної або якісної). Іноді для цього проводять суцільне обстеження, при якому досліджується кожний об'єкт сукупності. На практиці суцільне обстеження використовується порівняно рідко. Є декілька причин для цього:
· сукупність має велику кількість об'єктів, яку обстежити фізично неможливо;
· обстеження об'єкта вимагає його фізичного знищення;
· для обстеження одного об'єкту необхідні значні матеріальні витрати.
В таких випадках вибирають із всієї сукупності об'єктів порівняно невелику кількість об'єктів, яку називають вибіркою , і обстежують їх. Множина об'єктів, з якої здійснюється вибірка називається генеральною сукупністю. Число елементів вибірки називають об'ємом вибірки, а число елементів генеральної сукупності - об'ємом генеральної сукупності. Генеральна сукупність може мати скінченну або нескінченну кількість елементів.
Приклад 2.1. Множина деталей виготовлена у цеху є скінченною генеральною сукупністю.
Приклад 2.2. Множина можливих значень, які можна отримати у результаті вимірювання фізичної величини є нескінченною генеральною сукупністю.
Часто генеральна сукупність має скінченну кількість об'єктів. Але якщо це число достатньо велике, то можна вважати, що генеральна сукупність має нескінченну кількість об'єктів. Це значно спрощує розрахунки без суттєвої втрати точності результатів. Таке спрощення виправдовується тим, що збільшення об'єму генеральної сукупності практично не впливає на результати обробки статистичних даних.
При здійсненні вибірки можна поступати способами: після того, як об'єкт вибраний і над ним виконано спостереження, його або повертають або не повертають у генеральну сукупність. У відповідності до цього розрізняють повторні вибірки, коли вибрані об'єкти повертаються в генеральну сукупність, і безповторні - коли не повертаються.
Для того, щоб за даними вибірки можна було б зробити вірні висновки про генеральну сукупність, необхідно щоб вибірка правильно представляла пропорції генеральної сукупності. Цю умову коротко формулюють так: вибірка повинна бути репрезентативною.
На підставі закону великих чисел можна стверджувати, що вибірка буде репрезентативною, якщо її здійснити випадково. Кожний об'єкт вибірки вибраний випадково із генеральної сукупності, якщо всі об'єкти мають однакову ймовірність попасти у вибірку.
Якщо об'єм генеральної сукупності достатньо великий, а вибірка складає незначну її частину, то різниця між повторною і безповторною вибірками незначна; у граничному випадку, коли генеральна сукупність нескінченна, а вибірка скінченна, різниця між вибірками зникає зовсім.
На практиці використовуються різні способи відбору об'єктів у вибірку. Принципово ці способи можна розділити на два види:
1) відбір, що не вимагає розбиття генеральної сукупності на частини. Сюди належать: а) простий випадковий безповторний відбір; б) простий випадковий повторний відбір.
2) відбір, при якому генеральна сукупність розбивається на частини. Сюди належать: а) типовий відбір; б) механічний відбір; в) серійний відбір.
Простим випадковим називають відбір, при якому об'єкти вибираються по одному із всієї генеральної сукупності. Якщо при цьому об'єкти повертаються у генеральну сукупність, то відбір є простим випадковим повторним, якщо ні - простим випадковим безповторним.
Типовим називають відбір, при якому об'єкти вибираються не з усієї генеральної сукупності, а з кожної її “типової” частини.
Приклад 2.3. Якщо деталі виготовляються на декількох станках, то деталі випадковим чином вибирають із деталей виготовленних на кожному окремому станку.
Механічним називають відбір, при якому генеральна сукупність випадковим чином розбивається на частини і з кожної частини випадково вибирають один об'єкт. Кількість таких частин має дорівнювати необхідному об'єму вибірки.
Приклад 2.4. Якщо необхідно вибрати 20% деталей, то вибирають кожну п'яту; якщо необхідно вибрати 5% деталей, то відбирають кожну двадцяту.
Суттєвим недоліком механічного відбору є те, що він не завжди забезпечує репрезентативність вибірки.
Приклад 2. Якщо відбирають кожний двадцятий валик, причому одразу після цього міняють різак, то відібраними виявляться валики, обточені затупленним різаком.
Серійним називають відбір, при якому об'єкти вибираються з генеральної сукупності не по одному, а серіями, які піддаються суцільному обстеженню.
Приклад 2.6. Якщо вироби виготовляються великою кількістю станків, то здійснюють суцільне обстеження продукцію лише декількох випадково вибраних станків.
Серійним відбором користуються коли ознака, відносно якої обстежується генеральна сукупність мало коливається в різних серіях об'єктів.
На практиці часто використовуються комбінований відбір, при якому сполучають вказані вище способи.
3. Статистичні розподіли та чисельні характеристики вибірки

Значення чисельної ознаки, які спостерігаються в деякій конкретній вибірці, називають варіантами. Послідовність таких варіант у зростаючому порядку - варіаційним рядом. Якщо у вибірці об'єму n варіанта зустрічається разів, то число
(3.1)
називають відносною частотою варіанти, а - частотою варіанти.
Від вибірки до вибірки об'єму n частоти та відносні частоти змінюються. Це означає, вони є значеннями випадкових величин та , відповідно. В подальшому все що стосується конкретної вибірки буде позначатися малими буквами латинського та грецького алфавітів, а все що стосується вибірки взагалі - відповідними великими буквами.
Перелік варіант та відповідних до них частот (або відносних частот) називають статистичним розподілом вибірки. Статистичний розподіл, як правило, задається у вигляді таблиці. Ломана крива, яка з'єднує точки з координатами (xi, ni), або (xi, wi) у прямокутній системі координат називається полігоном частот.

Приклад 3.1. Для конкретної вибірки одержали статистичний розподіл відносних частот

.

Його гістограма має вигляд

Статистичний розподіл вибірки можна також представити у вигляді послідовності інтервалів та відповідних до них частот, що особливо зручно, коли ознакою є неперервна величина. Інтервал з варіантами розбивають на декілька часткових інтервалів довжиною і знаходять для кожного з них суму частот варіант, які потрапили в інтервал. Якщо всі інтервали рівні (), то відповідні варіанти називають рівновіддаленими, а їх чисельні значення визначаються серединами відрізків. Якщо частота первинної варіанти знаходиться на границі двох інтервалів, то її частота рівномірно розподіляється між ними. Графічно статистичний розподіл з послідовністю інтервалів задається гістограмою частот (відноснихчастот). Для побудови гістограми частот (або відносних частот), необхідно на вісі абсцис відкласти часткові інтервали і побудувати на них як основах прямокутники висотою . Величини називають густиною частоти, а величини - густиною відносної частоти. Загальна площа гістограми дорівнює сумі всіх частот, тобто об'єму вибірки n, а площа гістограми відносних частот дорівнює одиниці.

Приклад 3.2. Для конкретної вибірки об'єму одержали розподіл частот по частковим інтервалам

Частковий інтервал довжиною

Сума частот варіант часткового інтервалу
Густина частоти

5-10

10-15

15-20

20-25

25-30

30-35

35-40

4

6

16

36

24

10

4

0.8

1.2

3.2

7.2

4.8

2.0

0.8

Полігон частот такого розподілу має такий вигляд

Емпіричною інтегральною функцією вибірки називають функцію

,(3.2)

- кількість варіант менших ніж x (дискретна випадкова аеличина).

На відміну від емпіричної інтегральної функції розподілу вибірки, інтегральну функцію розподілу генеральної сукупності називають теоретичною інтегральною функцією розподілу. З теореми Бернуллі слідує, що відносна частота події тобто по ймовірності прямує до ймовірності цієї події. Це означає, що емпірична функція вибірки по ймовірності прямує до теоретичної функції розподілу генеральної сукупності. Тому емпірична функція розподілу вибірки є оцінкою теоретичної функції генеральної сукупності.

Із означення емпіричної функції слідують такі її властивості:

1. значення емпіричної функції належать відрізку [0; 1];

2. - неспадна функція;

3. якщо - найменша варіанта, то при ; якщо - найбільша варіанта, то

4. при .

Статистичні розподіли конкретної вибірки характеризуються початковими

(3.3)

та центральними

(3.4)

емпіричними моментами степені k.

Від вибірки до вибірки емпіричні моменти змінюються і тому мають розглядатися як значення випадкових величин

,

відповідно ( - великі букви грецького алфавіту, відповідні до них малі букви ).

Початкові та центральні емпіричні моменти визначаються аналогічним чином, як і моменти дискретних випадкових величин, лише замість ймовірностей використовуються відносні частоти. Тому всі терміни та співвідношення між моментами випадкової величини справедливі і для емпіричних моментів вибірки (необхідно лише замість теоретичних моментів підставити відповідні емпіричні). При великій кількості спостережень емпіричні моменти прямують по ймовірності до відповідних теоретичних моментів.

При обчисленнях емпіричних моментів зручно використовувати умовні варіанти

,(3.5)

c - стала величина (умовний нуль). Якщо варіаційний ряд складається з рівновіддалених варіант з кроком h і в якості умовного нуля вибрана одна з варіант, то умовні варіантами виражаються цілими числами.

Спочатку обчислюються початкові моменти для умовних варіант, які називаються умовними емпіричними моментами:

,(3.6)

а потому і самі емпіричні моменти:

,(3.7)

(3.8)

(3.9)

(3.10)

Доведення.

,

звідки .

.

Приклад 3.3. Для вибірки об'єму одержані такі результати:







1.00

1.03

1.05

1.06

1.08

1.10

1.12

1.15

1.16

1

3

6

4

2

4

3

6

5

1.19

1.20

1.23

1.25

1.26

1.29

1.30

1.32

1.33

2

4

4

8

4

4

6

4

5

1.37

1.38

1.39

1.40

1.44

1.45

1.46

1.49

1.50

6

2

1

2

3

3

2

4

2
Необхідно обчислити початковий момент першого порядку та другий, третій, четвертий центральний моменти вибірки.
Розв'язування. Об'єм вибірки достатньо великий і тому має зміст перейти до статистичного розподілу для рівновіддалених варіант. Для цього область значень розбивається на однакові інтервали з кроком і підраховується сума частот для кожного відрізку. За рівновіддалені частоти доцільно взяти середини інтервалів. У результаті одержується такий розподіл:
.
Для подальших обчислень зручно вибрати в якості умовного нуля варіанту 1.25: . У такому випадку розподіл умовних варіант (3.5) такий:
.
,
,
,
,
.
Умовні початкові моменти обчислюються за формулами (3.6):
; ;;;
На підставі формул (3.7 - 3.10) при :
;
;
;
.
4. Стандартні розподіли математичної статистики

4.1 Розподіл (хі-квадрат)

Нехай - система нормальних випадкових величин з одинаковими математичними сподіваннями та середньоквадратичними відхиленнями . Тоді сума квадратів цих величин розподілена за законом (хі квадрат) із степенями свободи. Густина розподілу
(4.1.1)
де - гамма-функція (додаток 1.11).
Розподіл однозначно визначається одним параметром - числом степені свободи n. Із збільшенням числа степеней свободи розподіл повільно наближається до нормального (додаток 1.12).
Математичне сподівання та дисперсія розподілу
,
.
Доведення. За означенням математичного сподівання
,
,
(використана рівність ).
З врахуванням цього
.
Для обчислення дисперсії зручно скористатися формулою
.
За означенням математичного сподівання
,
З врахуванням цього
.
4.2 Розподіл Стьюдента

Якщо Z - нормальна випадкова величина з параметрами та , а V - незалежна від Z величина, розподілена за законом із n степенями свободи, то випадкова величина
має розподіл, який називають розподілом Стьюдента, з густиною
.(4.2.1)
Розподіл Стьюдента однозначно визначається одним параметром - числом степеней свободи розподілу випадкової величини V (додаток 1.13)
Функція симетрична, тому математичне сподівання розподілу Стьюдента дорівнює нулю:
,(4.2.2)
а дисперсія
.(4.2.3)
4.3 Розподіл F Фішера-Снедекора

Якщо U і V - незалежні випадкові величини розподілені за законом з степенями свободи, відповідно, то випадкова величина
(4.3.1)
має розподіл , який називається розподілом F Фішера-Снедекора з густиною
(4.3.2)
Розподіл F Фішера-Снедекора однозначно визначається двома параметрами (додаток 1.14).
Математичне сподівання та дисперсія випадкової величини відповідно дорівнюють
,(4.3.3)
.(4.3.4)

Розподіл F Фішера-Снедекора називають ще -розподілом.

5. Статистичні оцінки параметрів розподілу

Нехай необхідно вивчити кількісну ознаку X генеральної сукупності. І нехай відомий вигляд розподілу цієї кількісної ознаки. Необхідно знайти параметри цього розподілу за статистичними даними вимірювань або спостережень.

Приклад 3.1.Якщо відомо наперед, що ознака генеральної сукупності розподілена нормально, то необхідно оцінити параметри нормального розподілу.

Приклад 3.2. Якщо відомо наперед, що ознака генеральної сукупності має розподіл Пуассона, то необхідно оцінити параметр цього розподілу.

Нехай значення кількісної ознаки X , які одержані в результаті n спостережень. Від серії до серії спостережень, взагалі кажучи, одержуються різні значення . Тому останні мають розглядатися як значення випадкових величин . Щоб знайти точкову оцінку (точкова оцінка виражається одним числом) невідомого параметра (знайти наближенне значення) необхідно знайти функцію цих випадкових величин, значення якої при їх конкретних значеннях було б значенням точкової оцінки невідомого параметра розподілу.

Отже, статистичною точковою оцінкою невідомого параметра теоретичного розподілу називають функцію випадкових величин. В подальшому точкова статистична оцінка буде називатися просто статистичною оцінкою.

Нехай - параметр теоретичного розподілу і його статистична оцінка. Статистична оцінка називається незміщеною, якщо її математичне сподівання дорівнює значенню параметра при будь-якому об'ємі вибірки, тобто якщо

,

і зміщеною якщо

.

Використання зміщеної оцінки приводить до систематичних похибок одного знаку. Цього немає при використанні незміщеної оцінки.

Але незміщена оцінка не завжди дає необхідну точність визначення значення параметра теоретичного розподілу. Для цього необхідно, щоб вона була ефективною, а при великих об'ємах вибірок і умотивованою. Статистична оцінка називається ефективною, якщо при заданному об'ємі вибірки має найменшу можливу дисперсію. Статистична оцінка є умотивованою, якщо при по ймовірності прямує до параметра теоретичного розподілу. Якщо дисперсія незміщенної оцінки при прямує до нуля, то така оцінка є умотивованою.

При малих об'ємах вибірки точкова оцінка може значно відрізнятися від значення параметра теоретичного розподілу. З цієї причини при малих об'ємах вибірок користуються інтервальними оцінками.

Інтервальною називають оцінку, яка визначається двома числами - кінцями інтервала. Інтервальна оцінка дозволяє встановити точність та надійність оцінок.

Нехай значення оцінки для конкретної вибірки. тим точніше визначає значення параметра , чим менша абсолютна різниця . Нехай >0 - деяке число. Ймовірність

(1)

називається надійністю оцінки . Рівність (1) можна переписати у вигляді

,

.

Виходить, що ймовірність того, що випадковий інтервал покриває невідоме значення параметра дорівнює . Такий інтервал називається довірчим. Отже, інтервальна оцін и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.