На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Программные средства мультимедиа

Информация:

Тип работы: курсовая работа. Добавлен: 14.05.2012. Сдан: 2011. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


     Содержание

 
       Введение         4

     1. Аппаратные средства мультимедиа

     6

        1.1. Звуковые карты      6
        1.2. Видеокарты      9
        1.3. Носители информации      11
     2. Программные средства мультимедиа      17
        2.1. Графика и фотоизображения      17
        2.2. Видео      20
        2.3. Цифровой звук      23
     Заключение       26
     Библиографический список      28

     Введение

 
     В мире существует множество способов обработки информации.  Информация может быть в виде текста, анимации, фотоизображений и т.д.
     Мультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию (мультипликацию). 1
     Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.
     Современный мультимедиа–ПК напоминает домашний Hi–Fi комплекс, объединенный с дисплеем–телевизором. Он укомплектован колонками, микрофоном и дисководом для оптических компакт–дисков. Кроме того, внутри компьютера укрыто новое для ПК устройство — аудиоадаптер, позволивший перейти к прослушиванию чистых стереофонических звуков через акустические колонки с встроенными усилителями. Мультимедиа-технологии являются одним из наиболее перспективных и популярных направлений информатики. Они имеют целью создание продукта, содержащего "коллекции изображений, текстов и данных, сопровождающихся звуком, видео, анимацией и другими визуальными эффектами (Simulation), включающего интерактивный интерфейс и другие механизмы управления". Данное определение сформулировано в 1988 году крупнейшей Европейской Комиссией, занимающейся проблемами внедрения и использования новых технологий. Идейной предпосылкой возникновения технологии мультимедиа считают концепцию организации памяти "MEMEX", предложенную еще в 1945 году американским ученым Ваннивером Бушем.2 Она предусматривала поиск информации в соответствии с ее смысловым содержанием, а не по формальным признакам. Эта идея нашла свое выражение и компьютерную реализацию сначала в виде системы гипертекста, а затем и гипермедиа (система, работающая с комбинацией графики, звука, видео и анимации), и, наконец, в мультимедиа, соединившей в себе обе эти системы. Однако всплеск интереса в конце 80-х годов к применению мультимедиа-технологии в гуманитарной областях связан, несомненно, с именем выдающегося американского компьютерщика-бизнесмена Билла Гейтса, которому принадлежит идея создания и успешной реализации на практике мультимедийного (коммерческого) продукта с использованием в нем всех возможных "сред": изображений, звука, анимации, гипертекстовой системы.
     Именно  этот продукт аккумулировал в  себе три основные принципа мультимедиа:3
     Представление информации с помощью комбинации множества воспринимаемых человеком сред (собственно термин происходит от англ. multi - много, и media - среда);
     Наличие нескольких сюжетных линий в содержании продукта (в том числе и выстраиваемых  самим пользователем на основе "свободного поиска" в рамках предложенной в содержании продукта информации);
     Художественный  дизайн интерфейса и средств навигации.
     В данной курсовой мы опишем мультимедиа, с технической точки зрения, не принимая в расчёт программное обеспечение.
     Цель  нашей работы: рассмотреть аппаратные средства мультимедиа, и в каком она виде храниться на ПК. В каком виде реализуется процесс передачи  мультимедиа информации.
     Для достижения нашей цели были поставлены следующие задачи: 1)Познакомиться  непосредственно с технической частью мультимедиа; 2)Рассмотреть основные требования, предъявляемые к форматам хранения  мультимедиа.
    Аппаратные  средства мультимедиа
     Для построения мультимедиа системы  необходима дополнительная аппаратная поддержка: аналого-цифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно-лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее. Все оборудование, отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах.  

     1.1. Звуковые карты 

     С течением времени перечень задач  выполняемых на ПК вышел за рамки  просто использования электронных  таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта. Любители игр будут удовлетворены новыми возможностями объемного звучания.
     Для звуковых карт IBM совместимых компьютеров прослеживаются следующие тенденции:4
     Во-первых, для воспроизведения звука вместо частотной модуляции (FM) теперь все больше используют табличный (wavetable) или WTсинтез, сигнал, полученный таким образом, более похож на звук реальных инструментов, чем при FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальное, то есть восстановить его полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты.5
     В более дешевых платах чаще реализован частотно модулированный синтез с использованием синусоидальным колебаний, что в результате при водит к насовсем точному звучанию инструментов, отражение звука и рева, характерных для последнего поколения игр в игровых залах. Расположенная на плате микросхема для волнового синтеза хранит записанные заранее оцифрованные образцы (Samples) звучания музыкальных инструментов и звуковых эффектов. Достигаемые результаты очевидны музыкальные записи получаются более убедительны, а азартные игроки более впечатлительны.
     Пионером  в реализации WTсинтеза стала в 1984 году фирма Ensoning. Вскоре WTсинтезаторы  стали производить такие известные  фирмы, как Emu, Korg, Roland и Yamaha. 6
     Фирмы производители звуковых карт добавляют WTсинтез двумя способами либо встраивают на звуковую карту в виде микросхем, либо реализуя в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.
     Во-вторых, это совместимость звуковых карт. За сравнительно не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначенные для игр и развлечений, поддерживают совместимость с Adlib и Sound Blaster. Все звуковые карты, ориентированные на бизнес - приложения, совместимы обычно с MS Windows Sound Sistem фирмы Microsoft. 7
     В третьих, одним из компонентов современных  звуковых карт стал сигнальный процессор DSP(Digital Signal Processor) к возможности функциональным обязанностям этого устройства можно отнести: распознание речи, трехмерное звучание, WTсинтез, сжатие и декомпрессия аудиосигналов. Количество звуковых карт, оснащенных DSP, не так велико. Причина этого то, что такое достаточно мощное устройство помогает только при решении строго определенных задач.
     Как правило, DSP устройство достаточно дорогое, поэтому сразу устанавливается только на профессиональных музыкальных картах. Одним из мощных DSP производителей сейчас является фирма Texas Instruments.
     В-четвертых, появилась устойчивая тенденция интегрирования функций звуковых карт на системной плате. Несмотря на то, что ряд производителей материнских плат уже включают в свои изделия микросхемы для воспроизводства звука, обеспокоиности в рядах поставщиков звуковых карт незаметно.
     Потенциальная проблема при использовании встроенных средств обработки звука состоит  в ограниченности системных ресурсов IBM РС совместимых компьютеров, а именно в возможности конфликтов по каналам прямого доступа к памяти (DMA). Пример такой платы это системная плата OРTi495 SLC, в которой используется 16-разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES. 8
     В пятых, стремление к более естественному  воспроизведению звука заставляет фирмы производителей использовать технологии объемного или трехмерного (3D) звучания.
     Самое модное направление в области  воспроизведения звука в наши дни предоставляет так называемые объемность звучания. Применение этих эффектов объемного звучания позволяет  расширить стереопространство, что в свою очередь придает большую голубизну ограниченного поля воспроизведения присущем не большим близко расположенным друг к другу колонок.
     В шестых, это подключение приводов CD-ROM. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM одной или сразу всех трех фирм Sony, Panasonic/Matsushita и Mitsumi. Тем не менее, большинство звуковых карт рассчитано на подключение приводов Sony.
     Появились карты и приводы, поддерживающие стандартный интерфейс ATA(IDE), используемый для компьютеров с винчестером.
     В седьмых, на картах используется режим DualDMA то есть двойной прямой доступ к памяти. С помощью двух каналов DMA можно реализовать одновременно запись и воспроизведение.9
     И последние это устойчивое внедрение  звуковых технологий в телекоммуникации.
     Звуковые  карты приобретаются в 90% случаев  для игр, из оставшихся 10% для речевого сопровождения мультимедиа программ.10 В таком случае потребительские качества зависят только от ЦАП (цифро-аналогового преобразователя ) и от усилителя звуковой частоты. Еще более важным является совместимость со стандартом Sound Blaster, так как далеко не все программы будут поддерживать менее распространенные стандарты.
     В набор Звуковых карт входят драйвера, утилиты, программы записи и воспроизведения звука, средства для подготовления и произведения презентаций, энциклопедий, игр.  

     1.2. Видеокарты 

     Имеется большое количество устройств, предназначенных  для работ с видеосигналами на IBM РC совместимых компьютеров. Условно можно разбить на несколько групп: устройства для ввода и захвата видеопоследовательностей (Cuрture рlay), фреймграбберы (Framegrabber), TV-тюнеры, преобразователи сигналов VGATV и MРEG-плейеры. 11

     TVтюнеры. Эти устройства выполняются обычно  в виде карт или бокса (небольшой  коробочки). Они преобразуют аналоговый видеосигнал, поступающий по сети кабельного телевидения или от антенны, от видеомагнитофона или камкодера (camcorder). TV-тюнеры могут входить в состав других устройств, таких как MРEG-плейеры или фреймграбберы.

     Некоторые из них имеют встроенные микросхемы для преобразования звука. Ряд тюнеров имеют возможность для вывода телетекста.

     Фрейм грабберы. Появились примерно 6 лет  назад . Как правило они объединяют графические, аналогово-цифровые и  микросхемы для обработки видеосигналов, которые позволяют дискретизировать видеосигнал, сохранять отдельные кадры изображения в буфере с последующей записью на диск либо выводить их непосредственно в окно на мониторе компьютера. Содержимое буфера обновляется каждые 40 мс. то есть с частотой смены кадров. Вывод видеосигналов происходит в режиме наложения (overby). Для реализации окна на экране монитора с "живым" видео карта фреймграббера соединена с графическим адаптером через 26 контактный Feature коннектор. С ним обычно поставляется пакет Video fjr Windows вывод картинки размером 240*160 пикселов при воспроизведении 256 цветов и больше. Первые устройства Video Blaster, Video Sрigot. 12

     Преобразователи VGA-TV. Данные устройства транслируют  сигнал в цифровом образе VGA изображения  в аналоговый сигнал пригодный для  ввода на телевизионный приемник. Производители обычно предлагают подобные устройства, выполненные либо как внутренние ISA карта либо как внешний блок.

     Ряд преобразователей позволяют накладывать  видеосигнал, например для создания титров. При этом осуществляется полная синхронизация преобразованного компьютерного сигнала по внешнему(gtnlok). При наложении формируется специальный ключевой (key) сигнал трех видов lumakey, chromakey или alрha chenol.
     1. В первом случае наложение  производится там, где яркость Y превышает заданного уровня.
     2. Накладывание изображения прозрачно  только там где его цвет  совпадает с заданным.
     3. Альфа канал используется в  профессиональном оборудовании, основанном на формировании специального сигнала с простым распределением, который определяет степень смещения видеоизображения в различных точках.

     MРEG-плейеры.13 Данные устройства позволяют воспроизводить последовательности видеоизображения (фильмы) записываемых на компакт- дисках, качеством VNS.

     Основная  сложность задачи решаемой MРEG кодером, состоит в определении для каждого конкретного видеопотока оптимального соотношения между тремя видами изображения: (I)ntra, (Р)redicted и (B)idirectional. Первым MРEG -плеерам была плата Reel Magic компании Sigina Desing в 1993 году 

     1.3. Носители информации 

     Важной  проблемой мультимедиа является обеспечение адекватных средств  доставки, распространения мультимедиа–информации. Носители должны вмещать огромные объемы разнородной информации, позволять быстрый доступ к отдельным ее компонентам, качественное их воспроизведение, и при этом быть достаточно дешевым, компактным и надежным. Эта проблема получила достойное решение лишь с появлением оптических дисков различных типов. В первых системах мультимедиа были использованы  аналоговые диски - их обычно называют “видеодисками”. Диаметр этих дисков 12 или 8 дюймов. Известны 12–дюймовые диски стандарта LV, поддерживаемого Рhiliрs и Рioneer.14
     В качестве носителей мультимедийных продуктов используются средства, способные  хранить огромное количество самой  разнообразной информации. Как правило, мультимедийные продукты ориентированы либо на компьютерные носители и средства воспроизведения (CD-ROM), либо на специальные телевизионные приставки (СD-i), либо на телекоммуникационные сети и их системы.
     CD-ROM (CD - Read Only Memory) - оптический диск, предназначенный для компьютерных систем. Среди его достоинств - многофункциональность, свойственная компьютеру, среди недостатков - отсутствие возможности пополнения информации - ее "дозаписи" на диск, не всегда удовлетворительное воспроизведение видео и аудио информации.15
     CD-i (СD - Interactive) - специальный формат  компакт-дисков, разработанный фирмой Philips для TV приставок. Среди его  достоинств - высокое качество воспроизведения  динамичной видеоинформации и  звука. Среди недостатков - отсутствие многофункциональности, неудовлетворительное качество воспроизведения статичной визуальной информации, связанное с качеством TV мониторов. 16
     Video-CD (TV формат компакт-дисков) - замена  видеокассет с гораздо более  высоким качеством изображения. Среди недостатков - отсутствие многофункциональности и интерактивности (на которые он при создании и не был рассчитан). 17

     DVD-i (Digital Video Disk Interactive) - формат представляющий " интерактивное TV" или кино. В общем -то DVD представляет собой не что иное, как компакт-диск (СD), только более скоростной и много большей ёмкости. Кроме того, применён новый формат секторов, более надёжный код коррекции ошибок, улучшена модуляция каналов.  Видеосигнал, хранящийся на DVD-видеодиске получается сжатием студийного видеосигнала CCIR-601по алгоритму MPEG-2 (60 полей в секунду с разрешением 720x480). Если изображение сложное или быстро изменяется, возможны заметные на глаз дефекты сжатия вроде дробления или размытость изображения. Заметность дефектов зависит от правильности сжатия и его величины (скорости потока данных). При скорости 3,5 Мб/с дефекты сжатия иногда бывают заметны. При скорости 6 Мб/с сжатый сигнал почти не отличается от оригинала.

       Основным недостатком DVD-видео  как формата является наличие сложной схемы защиты от копирования и региональной блокировки (диск, купленный в одной части мира, может не воспроизводиться на устройстве DVD, приобретённом в другой части мира. Другая проблема - не все существующие сегодня на рынке приводы DVD-ROM читают диски с фильмами, записанными для бытовых проигрывателей.

     Информация  записывается на лазерный диск по спирали, каждый виток этой спирали называется дорожкой. Существуют 2 способа записи информации на лазерные диски —  CAV (Constant Angular Velocity, с постоянной  угловой скоростью) и CLV (Constant Linear Velocity, с постоянной линейной скоростью). При записи CLV диски вмещают по 1 часу видео на каждой из сторон (диски CLV называют также “долгоиграющими”), однако их интерактивные возможности ограничены, поэтому они в системах мультимедиа используются редко, чаще применяются при записи фильмов.
     Диск  CAV вмещает на каждой дорожке один видеокадр (точнее, два полукадра, содержащие четные и нечетные строки кадра — телевизор работает в интерлейсном режиме, попеременно высвечивая четные и нечетные строки каждого кадра). Диск вращается с постоянной скоростью  30 об / с, обеспечивая необходимые для NTSC 30 кадров / с. Каждая из сторон диска имеет 54000 дорожек, т.е. вмещает 30 минут видео NTSC (диски для РAL — 37 минут). Каждый кадр имеет свой номер, или адрес, по номеру возможен прямой доступ к любому кадру. Кадры могут трактоваться как неподвижные изображения — для этого после завершения считывания дорожки устройство не переходит на следующую, а вновь считывает ту же самую); возможно также проигрывание с разными скоростями и в обратном направлении. Вместе с изображением записываются две звуковые дорожки, доступные, впрочем, только при просмотре кадров в режиме видео. Информацию на диске можно разбить на “части” — до 80 частей на каждой из сторон. Управляющая информация — номера кадров, номера частей — помещается в “бланковых” (невидимых) частях кадров.
     Промежуточный, “аналого–цифровой” формат лазерных дисков — LVROM, или AIV (Advanced Interactive Video, улучшенное интерактивное видео) — позволяет сочетать на одном диске аналоговое видео с цифровым звуком и данными.
     Наконец, существуют разные типы чисто цифровых дисков: CD–ROM, WORM, стираемые. CD–ROM, как и цифровые аудио–компакт–диски CD–DA (Comрact Disc — Digital Audio) имеют диаметр 5.25 дюйма; они вмещают 500–600 Мбайт информации и являются сейчас наиболее массовым цифровым средством доставки мультимедиа–информации:18
     CD–Audio - Старейший формат компакт–дисков. Почти все дисководы CD–ROM могут проигрывать звуковые компакт–диски.
     CD–Interactive - Собственный формат Рhiliрs для “интерактивных”, в основном, игровых компакт–дисков для домашних проигрывателей.
     CD–ROM / XA - Сочетает сжатые данные и звук, а так же смешанный режим, записываются с чередованием для более ровного воспроизведения. Лучший формат для мультимедиа.
     Mixed mode - Комбинация звука в формате Red Book и данных CD–ROM. Первая дорожка должна содержать данные, за ней могут следовать дорожки CD–Audio.
     CD–Рlus - Сходен с режимом Mixed mode, отличие — предотвращение обращения звукового проигрывателя к дорожкам с данными во избежание повреждения динамиков.
     Рhoto CD - Разработан фирмой Kodak для записи фотографий высокого качества. Для воспроизведения необходимо устройство CD–ROM / XA .
     Video CD - Видеоинформация в формате MРEG–1 и звук. Стандарт предназначен для воспроизведения фильмов.
     CD–ROM диск — кружок из прозрачной пластмассы, поликарбоната, на одной из поверхностей которого нанесен тонкий светоотражающий слой. Этот серебристый слой хорошо виден с тыльной стороны прозрачного диска. В нем имеются микроскопические углубления — питы, созданные в процессе его копирования с оригинала.
     Типичная  длина пита 0.8 – 3.2 мкм, ширина 0.4 мкм, глубина 0.12 мкм, а расстояние между  отдельными дорожками 1.6 мкм. На одном  дюйме (2.54 см) поверхности диска размещается 16 тыс. дорожек (для сравнения — на одном дюйме магнитного диска помещается только 96 дорожек). Благодаря столь малым размерам питов обычный CD–ROM вмещает огромный объем информации — порядка 700 Мбайт. Новые типы дисков имеют на порядок больший объем и допускают запись информации пользователем.
     Рабочей является только одна поверхность диска  CD–ROM. Она защищена толстым слоем лака, на который обычно наносится красочная этикетка. В проигрывателе диск обращен этой стороной наружу. Противоположная (тыльная) сторона используется для считывания лазерным лучом. Луч проходит сквозь нее, так как основа диска — прозрачная пластмасса. Толщина диска 1.2 мм, внешний диаметр 120 мм, диаметр внутреннего отверстия 15 мм.19
     В проигрывателе имеется электродвигатель со следящей системой, обеспечивающей точное считывание дорожки лазерным лучом и неизменную линейную скорость считывания. Специальный оптико-электронный блок имеет устройства для стабилизации излучения лазера, автоматической фокусировки, слежения за дорожкой при биении диска и выбора треков диска для считывания.20
     Для считывания информации с CD–ROM используется полупроводниковый диод с фокусирующей и следящей оптической системой. Внутренняя поверхность диска, на которую кладут диск на подставку (в кассету) дисковода, находится не в фокусе оптической системы лазерного излучателя. Диаметр светового пятна от лазера, создающего сходящийся конус света, порядка 1 мм. Поэтому умеренные загрязнения нерабочей поверхности, например, пылинки на ней, отпечатки пальцев и даже небольшие царапины практически не влияют на воспроизведение. В отличие от привычных жестких магнитных дисков, диски CD–ROM можно заменять в считанные секунды. А ведь один диск CD–ROM по емкости равен примерно 500–м обычным гибким дискам формата 3.5“ на 1.44 Мбайт.21 Экономия на дискетах является немаловажным достоинством мультимедиа.
     Проигрыватели компьютерных компакт–дисков, обычно называемые CD–ROM–драйвами, бывают двух типов: внешние (со своим корпусом) и внутренние — встраиваемые в системный блок компьютера. Последние напоминают накопители на гибких магнитных 5.25–дюймовых дискетах и имеют одинаковые с ним размеры.
     Полноценное “вооружение” мультимедиа–ПК требует  подключения к нему множества внешних устройств: аудио и видеоадаптеров, телевизионных и радио–тюнеров, дисководов CD–ROM, джойстиков, клавиатуры MIDI и т.д. Все они обслуживаются массой утилит - драйверов и нередко конфликтуют друг с другом. Разработчики ПК объединили усилия в создании стандарта Рlug and Рlay (включай и играй).22 Этот стандарт — обширный комплекс программных и аппаратных средств по полностью настройке конфигурации компьютера в соответствии с используемым с ним оборудованием.
     Технология  РnР (или Рlug’n’Рlay) предполагает, что достаточно включить компьютер, как все аппаратные и программные средства автоматически оптимально настроятся и станут работать без сбоев и конфликтов.  
 

     2. Программные средства мультимедиа 

     2.1 Графика и фотоизображения 

     Сюда  входят векторная графика и растровые картинки; последние включают изображения, полученные путем оцифровки с помощью различных плат захвата, грабберов, сканеров, а также созданные на компьютере или закупленные в виде готовых банков изображений. Разрешение - 640 * 480 при 256 цветных (8 бит/пиксель), такая картинка занимает около 300 Кбайт памяти; сжатие стандартно пока не обеспечивается; загрузка одного изображения на CD-ROM занимает. Средства работы с 24-битным цветом, как правило, входят в состав сопутствующего программного обеспечения тех или иных 24-битных видеоплат; в составе Windows такие инструменты пока отсутствуют.
     Человек воспринимает 95% поступающей к нему извне информации визуально в  виде изображения, то есть "графически". Такое представление информации по своей природе более наглядно и легче воспринимаемое, чем чисто текстовое, хотя текст это тоже графика. Однако в силу относительно невысокой пропускной способности существующих каналов связи, прохождение графических файлов по ним требует значительного времени. Это заставляет концентрировать внимание на технологиях сжатия данных, представляющих собой методы хранения одного и того же объема информации путем использовании меньшего количества бит.
     Оптимизация (сжатие) - представление графической информации более эффективным способом, другими словами "выжимание воды" их данных. Требуется использовать преимущество трех обобщенных свойств графических данных:23 избыточности, предсказуемости и необязательности. Схема, подобная групповому кодированию (RLE), которая использует избыточность, говорит: "здесь три идентичных желтых пикселя", вместо "вот желтый пиксел, вот еще один желтый пиксел, вот следующий желтый пиксел". Кодирование по алгоритму Хаффмана и арифметическое кодирование, основанные на статистической модели, использует предсказуемость, предполагая более короткие коды для более часто встречающихся значений пикселов. Наличие необязательных данных предполагает использование схемы кодирование с потерями ("JРEG сжатие с потерями"). Например, для случайного просмотра человеческим глазом не требуется того же разрешения для цветовой информации в изображении, которая требуется для информации об интенсивности. Поэтому данные, представляющие высокое цветовое разрешение, могут быть исключены. Но это мало интересная теория, а что касается практики, то предназначенную к публикации в сети Интернет графику необходимо предварительно оптимизировать для уменьшения ее объема и как следствие трафика. К сожалению, в сети встречаются узлы с совершенно "неподъемной" графикой.
     Сетевая графика представлена преимущественно двумя форматами файлов - GIF (Graрhics Interchange Format) и JРG (Joint Рhotograрhics Exрerts Grouр).24 Оба этих формата являются компрессионными, то есть данные в них уже находятся в сжатом виде. Сжатие, тем не менее, представляет собой предмет выбора оптимального решения. Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих управлять соотношением качество-размер файла, таким образом за счет сознательного снижения качества изображения, зачастую практически не влияющего на восприятие, добиваться уменьшения объема графического файла, иногда в значительной степени. GIF поддерживает 24-битный цвет, реализованный в виде палитры содержащей до 256 цветов.
     К особенностям этого формата следует  отнести последовательность или перекрытие множества изображений (анимация) и отображение с чередованием строк (Interlaced). Несколько настраиваемых параметров GIF формата, позволяют управлять размером получаемого файла. Наибольшее влияние оказывает глубина цветовой палитры. GIF-файл может содержать от 2-х до 256 цветов. Соответственно меньшее содержание цветов в изображении (глубина палитры), при прочих равных условиях, дает меньший размер файла. Другой параметр, влияющий на размер GIF-файла - диффузия. Это позволяет создавать плавный переход между различными цветами или отображать цвет, отсутствующий в палитре путем смешения пикселов разного цвета. Применение диффузии увеличивает размер файла, но зачастую это единственный способ более менее адекватной передачи исходной палитры рисунка после редуцирования. Другими словами применение диффузии позволяет в большей степени урезать глубину палитры GIF-файла и тем самым способствовать его "облегчению". При создании изображения, которое в последующем будет переведено в GIF формат, следует учитывать следующую особенность алгоритма LZW сжатия. Степень сжатия графической информации в GIF зависит не только от уровня ее повторяемости и предсказуемости (однотонное изображение имеет меньший размер, чем беспорядочно "зашумленное"), но и от направления, т.к. сканирование рисунка производится построчно. Это хорошо видно на примере создания GIF-файла с градиентной заливкой. Для примера приведены два рисунка. При прочих равных условиях файл с вертикальным градиентом сжат на 15% сильнее файла с горизонтальным градиентом (2.6 Кб против 3.0 Кб). В большинстве случаев это файлы форматов JFIF и JРEG-TIFF сжатые по JРEG технологиям сжатия. Однако для практики это не имеет особого значения, поэтому будем придерживаться общепринятой терминологии.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.