На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Контрольная работа по "Экологии". Экосистема. Структуры экосистемы. Виды отношений в экосистеме.

Информация:

Тип работы: контрольная работа. Добавлен: 11.07.2012. Сдан: 2011. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


    Экосистема.  Структуры  экосистемы. Виды отношений в  экосистеме. Принципы функционирования в  экосистеме.
     Экология  рассматривает взаимодействие живых  организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) и, во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам.
     Экологическая система, или экосистема, - это «объективно существующая часть природной среды, которая имеет пространственно-территориальные границы и в которой живые (растения, животные и другие организмы) и неживые ее элементы взаимодействуют как единое функциональное целое и связаны между собой обменом веществом и энергией» (Закон РФ «Об охране окружающей среды», 2002, ст. I). В настоящее время концепция экосистемы играет весьма важную роль в экологии благодаря гибкости самого понятия: к экосистемам можно относить биотические сообщества любого масштаба с их средой обитания - от пруда до Мирового океана и от пня в лесу до обширного лесного массива - тайги и т.п.
     Таким образом, для естественной экосистемы характерны три признака:
     1) экосистема обязательно представляет  собой совокупность живых и  неживых компонентов.
     2) в рамках экосистемы осуществляется  полный цикл, начиная с создания  органического вещества и заканчивая  его разложением на неорганические  составляющие;
     3) экосистема сохраняет устойчивость  в течение некоторого времени,  что обеспечивается определенной  структурой биотических и абиотических  компонентов. 
     Примерами природных экосистем являются озеро, лес, пустыня, тундра, суша, океан, биосфера.
     Как видно из примеров, более простые  экосистемы входят в более сложно организованные. При этом реализуется иерархия организации систем, в данном случае экологических.
     Природные экосистемы – это открытые системы, они должны получать и отдавать вещества и энергию. Запасы веществ, усвояемые организмами и прежде всего продуцентами, в природе не безграничны. Если бы эти вещества не использовались многократно, то жизнь на Земле была бы невозможна. Вечный круговорот биогенных компонентов возможен лишь при наличии функционально различных групп организмов, которые осуществляют и поддерживают поток веществ, извлекаемых ими из окружающей среды.
     Таким образом, устройство природы следует  рассматривать как системное  целое, состоящее из вложенных одна в другую экосистем, высшей из которых  является уникальная глобальная экосистема - биосфера. В ее рамках происходит обмен  энергией и веществом между всеми  живыми и неживыми составляющими  в масштабах планеты. Грозящая всему  человечеству катастрофа состоит в  том, что нарушен один из признаков, которым должна обладать экосистема: биосфера как экосистема деятельностью  человека выведена из состояния устойчивости. В силу своих масштабов и многообразия взаимосвязей она не должна от этого  погибнуть, она перейдет в новое  устойчивое состояние, изменив при  этом свою структуру, прежде всего неживую, а вслед за ней неизбежно и  живую. Человек как биологический  вид меньше других имеет шанс приспособиться к новым быстро изменяющимся внешним условиям и скорее всего, исчезнет первым. Поучительным и наглядным тому примером является история острова Пасхи.
     На  одном из полинезийских островов, носящем название острова Пасхи, в результате сложных миграционных процессов в VII веке возникла замкнутая  изолированная от всего мира цивилизация. В благоприятном субтропическом климате она за сотни лет существования достигла известных высот развития, создав самобытную культуру и письменность, до наших дней не поддающуюся расшифровке. А в XVII веке она без остатка погибла, уничтожив вначале растительный и животный мир острова, а затем погубив себя в прогрессирующей дикости и каннибализме. У последних островитян не осталось уже воли и материала, чтобы построить спасительные "ноевы ковчеги" - лодки или плоты. В память о себе исчезнувшее сообщество оставило полупустынный остров с гигантскими каменными фигурами - свидетелями былого могущества.
     С точки зрения пищевых взаимодействий организмов, трофическая структура  экосистемы делится на два яруса:
     I) верхний – автотрофный ярус, или «зеленый пояс», включающий фотосинтезирующие организмы
     2) нижний – гетеротрофный ярус, или «коричневый пояс» почв и осадков, в котором преобладает разложение отмерших органических веществ снова до простых минеральных образований.
     Однако  в экосистеме следует выделять ряд  компонентов:
     1) неорганические вещества, участвующие в круговоротах;
     2)органические соединения, связывающие биотическую и абиотическую части;
     3) воздушная, водная и субстратная среда с абиотическими факторами;
     4) продуценты - автотрофные организмы, (создатели первичной биологической продукции в экосистеме);
     5) консументы, или фаготрофы (пожиратели), -- гетеротрофные организмы, (организмы, питающиеся живым или мертвым органическим веществом) ;
     6) редуценты, или сапротрофы (питающиеся гнилью), -- гетеротрофные организмы,(организмы, которые в ходе жизнедеятельности превращают органические остатки в неорганические вещества, обеспечивая возвращение содержащихся в них элементов в круговорот веществ).
     Биотические отношения и роль видов в экосистеме.
     Ареалы  распространения  и численность  организмов каждого  вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду, а факторы этой среды называются биотическими. Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни.   Рассмотрим характерные особенности отношений различных типов.  Конкуренция является в природе наиболее всеохватывающим типом отношений, при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно.   Конкуренция может быть внутривидовой и межвидовой.  Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться жизненного пространства, пищи или биогенных элементов, света, места укрытия и многих других жизненно важных факторов.  Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.
     Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях является хищничество, при котором особь одного вида, называемая хищником, питается организмами (или частями организмов) другого вида, называемого жертвой, причем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения хищник - жертва.  Еще один тип взаимодействия видов - паразитизм. Паразиты питаются за счет другого организма, называемого хозяином, однако в отличие от хищников они живут на хозяине или внутри его организма на протяжении значительной части их жизненного цикла. Паразит использует для своей жизнедеятельности питательные вещества хозяина, тем самым постоянно ослабляя, а нередко убивая его.  От паразитизма отличается аменсализм, при котором один вид причиняет вред другому, не извлекая при этом для себя никакой пользы. Чаще всего это те случаи, когда причиняемый вред заключается в изменении среды. Так поступает человек, разрушая и загрязняя окружающую среду.  Нейтрализм - это такой тип отношений, при котором ни одна из популяций не оказывает на другую никакого влияния: никак не сказывается на росте его популяций, находящихся в равновесии, и на их плотности. В действительности бывает, однако, довольно трудно при помощи наблюдений и экспериментов в природных условиях убедиться, что два вида абсолютно независимы один от другого. Обобщая рассмотрение форм биотических отношений, можно сделать следующие выводы:
     1) отношения между живыми организмами  являются одним из основных  регуляторов численности и пространственного  распределения организмов в природе; 
     2) негативные взаимодействия между  организмами проявляются на начальных  стадиях развития сообщества  или в нарушенных природных  условиях; в недавно сформировавшихся  или новых ассоциациях вероятность  возникновения сильных отрицательных  взаимодействий больше, чем в  старых ассоциациях; 
     3) в процессе эволюции и развития  экосистем обнаруживается тенденция  к уменьшению роли отрицательных  взаимодействий за счет положительных,  повышающих выживание взаимодействующих  видов. 
     Все эти обстоятельства человек должен учитывать при проведении мероприятий  по управлению экологическими системами  и отдельными популяциями с целью  использования их в своих интересах, а также предвидеть косвенные  последствия, которые могут при  этом иметь место.
     Функционирование  экосистем.
     Напомним, что экосистема - это совокупность живых организмов, обменивающихся непрерывно энергией, веществом и информацией друг с другом и с окружающей средой. Рассмотрим сначала процесс обмена энергией.  Энергию определяют как способность производить работу. Свойства энергии описываются законами термодинамики.  
Первый закон (начало) термодинамики или закон сохранения энергии утверждает, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Второй закон (начало) термодинамики или закон энтропии утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше ее энтропия.  Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии (энергия Солнца); во вторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а использовав - рассеивать в окружающую среду.   Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии.

     Энергия и продуктивность экосистем
     Итак, жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению  через живое вещество энергии, передаваемой от одного трофического уровня к другому; при этом происходит постоянное превращение  энергии из одних форм в другие. Кроме того, при превращениях энергии  часть ее теряется в виде тепла.  
Тогда возникает вопрос: в каких количественных соотношениях, пропорциях должны находиться между собой члены сообщества разных трофических уровней в экосистеме, чтобы обеспечивать свою потребность в энергии?

     Весь  запас энергии  сосредоточен в массе  органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему ( биомассу всегда можно выразить в единицах энергии) . Скорость образования органического вещества называют продуктивностью. Различают первичную и вторичную продуктивность. В любой экосистеме происходит образование биомассы и ее разрушение, причем эти процессы всецело определяются жизнью низшего трофического уровня - продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество и, следовательно, общая продуктивность экосистемы от них не зависит. Высокие скорости продуцирования биомассы наблюдаются в естественных и искусственных экосистемах там, где благоприятны абиотические факторы, и особенно при поступлении дополнительной энергии извне, что уменьшает собственные затраты системы на поддержание жизнедеятельности. Такая дополнительная энергия может поступать в разной форме: например, на возделываемом поле - в форме энергии ископаемого топлива и работы, совершаемой человеком или животным. Таким образом, для обеспечения энергией всех особей сообщества живых организмов экосистемы необходимо определенное количественное соотношение между продуцентами, консументами разных порядков, детритофагами и редуцентами. Однако для жизнедеятельности любых организмов, а значит и системы в целом, только энергии недостаточно, они обязательно должны получать различные минеральные компоненты, микроэлементы, органические вещества, необходимые для построения молекул живого вещества.
       Откуда изначально берутся в живом веществе необходимые для построения организма компоненты? Их поставляют в пищевую цепь все те же продуценты. Неорганические минеральные вещества и воду они извлекают из почвы, CO2 - из воздуха, и из образованной в процессе фотосинтеза глюкозы с помощью биогенов строят далее сложные органические молекулы - углеводы, белки, липиды, нуклеиновые кислоты, витамины и т.п.  Чтобы необходимые элементы были доступны живым организмам, они все время должны быть в наличии.  В этой взаимосвязи реализуется закон сохранения вещества. Его удобно сформулировать следующим образом: атомы в химических реакциях никогда не исчезают, не образуются и не превращаются друг в друга; они только перегруппировываются с образованием различных молекул и соединений (одновременно происходит поглощение или выделение энергии). В силу этого атомы могут использоваться в самых различных соединениях и запас их никогда не истощается. Именно это происходит в естественных экосистемах в виде круговоротов элементов. При этом выделяют два круговорота: большой (геологический) и малый (биотический).   Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.  Обобщая законы функционирования экосистем, сформулируем еще раз основные их положения:
     1) природные экосистемы существуют  за счет не загрязняющей среду  даровой солнечной энергии, количество  которой избыточно и относительно  постоянно; 
     2) перенос энергии и вещества через сообщество живых организмов в экосистеме происходит по пищевой цепи; все виды живого в экосистеме делятся по выполняемым ими функциям в этой цепи на продуцентов, консументов, детритофагов и редуцентов - это биотическая структура сообщества; количественное соотношение численности живых организмов между трофическими уровнями отражает трофическую структуру сообщества, которая определяет скорость прохождения энергии и вещества через сообщество, то есть продуктивность экосистемы;
     3) природные экосистемы благодаря  своей биотической структуре  неопределенно долго поддерживают  устойчивое состояние, не страдая  от истощения ресурсов и загрязнения  собственными отходами; получение  ресурсов и избавление от отходов  происходят в рамках круговорота  всех элементов.  

     2. Парниковый эффект. Степень потепления  и возможные его  последствия. Стратегии  борьбы с парниковым  эффектом.
     Все мы в последние десятилетия наблюдаем  резкое повышение температуры, когда  зимой в место отрицательных температур, мы месяцами наблюдаем оттепели до 5 – 8 градусов тепла, а в летние месяцы – засухи и суховеи, иссушающие почву земли и ведущие к ее эрозии. Почему это происходит? Такое изменение температуры объясняется учеными тем, что меняется сам климат нашей планеты. Большинство ученых сходятся во мнение, что начинается глобальное потепление. Причинами называются и естественное колебание средней температуры, и солнечная активность, и параметры орбиты земли, и парниковые газы. Как причину потепления рассматривают даже умненьшение количесвтва пыли на земле.
       Многолетние наблюдения показывают, что в результате хозяйственной деятельности изменяется газовый состав и запыленность нижних слоев атмосферы. С распаханных земель во время пыльных бурь поднимаются в воздух миллионы тонн частиц почвы. При разработке полезных ископаемых, при производстве цемента, при внесении удобрений и трении автомобильных шин о дорогу, при сжигании топлива и выбросе отходов промышленных производств в атмосферу попадает большое количество взвешенных частиц разнообразных газов. Определения состава воздуха показывают, что сейчас в атмосфере Земли углекислого газа стало на 25% больше, чем 200 лет назад. Это, безусловно, результат хозяйственной деятельности человека, а также вырубки лесов, зеленые листья которых поглощают углекислый газ.
          Еще в конце прошлого века великолепный химик и серьезный ученый Сванте Аррениус выдвинул гипотезу: поскольку углекислый газ поглощает тепловое излучение, то естественно предположить, что чем больше его в атмосфере, тем теплее становится на Земле. С повышением концентрации углекислого газа в воздухе связан парниковый эффект, который проявляется в нагреве внутренних слоев атмосферы Земли. Это происходит потому, что атмосфера пропускает основную часть излучения Солнца. Часть лучей поглощается и нагревает земную поверхность, а от нее нагревается атмосфера. Другая часть лучей отражается от поверхности Планеты и это излучение поглощается молекулами углекислого газа, что способствует повышению средней температуры Планеты. Действие парникового эффекта анналогично действию стекла в оранжерее или парнике (от этого возникло название " парниковый эффект").
          Газы, вызывающие своей повышенной концентрацией парниковый эффект, называют парниковыми газами. В основном это углекислый газ и водяной пар, но существуют и другие газы, поглощающие энергию, исходящую от Земли.
     ПРИРОДНЫЙ ГАЗ.
        Природный газ, используемый в энергетике, относится к невозобновляемым энергетическим ресурсам, в то же время это наиболее экологически чистый вид традиционного энергетического топлива. Природный газ на 98% состоит из метана, остальные 2% приходятся на этан, пропан, бутан и некоторые другие вещества. При сжигании газа единственным действительно опасным загрязнителем атмосферы является смесь оксидов азота. На тепловых электростанциях и в отопительных котельных, использующих, природный газ, выбросов углекислого газа, способствующего парниковому эффекту, вдвое меньше, чем на угольных энергетических установках, вырабатывающих тоже количество энергии.
       Применение сжиженного и сжатого природного газа на автомобильном транспорте дает возможность значительно снизить загрязнение среды обитания и улучшить качество воздуха в городах, то есть "затормозить" парниковый эффект. По сравнению с нефтью, природный газ не дает такого загрязнения среды в процессе добычи и транспортировки к месту потребления.
       Запасы природного газа в мире достигают 70 триллионов кубических метров. При сохранении нынешних объемов добычи их хватит более, чем на 100 лет. Газовые месторождения встречаются как отдельно, так и в соединении с нефтью, водой, а также в твердом состоянии (так называемые газогидратные скопления). Большинство месторождений природного газа располагаются в труднодоступных и экологически ранимых районах Заполярной тундры.
     Хотя  природный газ и не вызывает парниковый эффект, его можно отнести к "парниковым" газам, так как при его использовании  выделяется углекислый газ, способствующий парниковому эффекту.
     УГЛЕКИСЛЫЙ  ГАЗ.
     Углекислый  газ - диоксид углерода, постоянно  образуется в природе при окислении  органических веществ: гниении растительных и животных остатков, дыхании, сжигании топлива. Парниковый эффект происходит из-за нарушения человеком круговорота  углекислого газа в природе. Его  основным источником служат процессы сжигания органического топлива (уголь, газ, нефть и продукты ее переработки, горючие сланцы, дрова). Все эти  вещества состоят в основном из углерода и водорода. Поэтому их еще называют органическим, углеводородным топливом. За счет их сжигания в атмосферу  поступает до 80% двуокиси углерода.
     При горении, как известно, поглощается  кислород и выделяется углекислый газ. Вследствие этого процесса, каждый год человечество выбрасывает в  атмосферу 7 миллиардов тонн углекислого  газа! Даже представить трудно себе эту величину. Одновременно с этим на Земле вырубаются леса – один из самых главных потребителей углекислого  газа, причем, вырубаются со скоростью 12 гектаров в минуту!!! Вот и получается, что углекислого газа в атмосферу  поступает все больше и больше, а потребляется растениями все меньше и меньше.
     Сегодня среди процессов, нарушающих редукцию почвенно-растительного покрова  суши стоят такие, как: 1) сведение лесов; 2) земледелие; 3) перевыпас и ряд других нарушений.
     Круговорот  углекислого газа на Земле нарушается, поэтому в последние годы содержание углекислого газа в атмосфере  хотя и медленно, но верно увеличивается. А чем его больше, тем сильнее  парниковый эффект. Поэтому одним  из самых важных результатов, привлекающих к себе внимание ученых и широко обсуждаемых в литературе, является повышение концентрации углекислого  газа в атмосфере. Опубликованные в  последние дни данные о содержании парниковых газов в атмосфере заставляют ученых делать неутешительные выводы: их содержание не просто нарастает, за последние два года увеличиваются и темпы прироста. Это, главным образом, касается измерений уровня углекислого газа. Следует отметить, что в последние 70 лет наблюдается поднятие уровня Мирового океана в среднем на 1,5 мм в год. Полагают, что одна из причин этого - таяние ледников, происходящее вследствие потепления климата. Быстрое таяние ледников может привести к сильной перестройке всей природной среды. Так, возможен подъем уровня Мирового океана на 5 м, затопление низменностей и в связи с этим необходимость переселения почти миллиарда человек.
     ХЛОРФТОРСОДЕРЖАЩИЕ  ГАЗЫ.
     Галогены  или хлорфторсодержащие газы широко применяются в химической промышленности. Фтор используют для получения некоторых ценных вторпроизводных, например, смазочных веществ, выдерживающих высокую температуру, пластмасс, стойких к химическим реагентам (тефлон), жидкостей для холодильных машин(фреонов или хладонов). Фреон выделяется также аэрозолями и холодильными машинами.
     Один  из самых распространенных фреонов-дифтордихлорэтан (фреон-12) - газ, не ядовит, не реагирует с металлами, без цвета и запаха. Под давлением легко сжижается и превращается в жидкость с температурой кипения - 30градусов по Цельсию. Применяется в холодильных установках и как растворитель для образования аэрозолей. Хлор служит для приготовления многочисленных органических и неорганических соединений. Его применяют в производстве соляной кислоты, хлорной извести, гипохлоритов и хлоратов и др. Большое количество хлора используется для отбеливания тканей и целлюлозы, идущей на изготовление бумаги.
     Хлор  применяют также для стериллизации питьевой воды и обеззараживане сточных вод. В цветной металлургии его используют для хлорирования руд, которое является одной из стадий получения некоторых металлов. Особенно большое значение приобрели за последнее время некоторые хлорорганические продукты. Например, хлорсодержащие органические растворители-дихлорэтан, четыреххлористый углерод, широко применяются для экстракции жиров и обезжиривание металлов. Некоторые хлорорганические продукты служат эффективными средствами борьбы с вредителями сельскохозяйственных культур. На основе хлорорганических продуктов изготовляют различные пластические массы, синтетические волокна, каучуки, заменители кожи (павинол). Так как хлорфторсодержащие газы широко используются в промышленности, их добыча непрерывно растет, а, значит, также растут и выбросы в атмосферу этих газов.
     Хлорфторсодержащие газы - "парниковые газы", следовательно, из-за повышения их концентрации в атмосфере процесс парникового эффекта идет быстрее. Кроме того фреоны, относящиеся к хлорфторсодержащим газам, разрушают озоновый слой в атмосфере. Из этих газов делают ядохимикаты, которые хотя и борятся с сельскохозяйственными вредителями, но и нарушают экологический баланс.
     Содержание  озона в стратосфере также  воздействует на климат. Поглощение озоном ультрафиолетовой радиации приводит к  нагреванию определенных слоев воздуха  высоко в стратосфере. Эти слои не позволяют газообразным примесям проникать  в толщу стратосферы. Тепловая «шапка» - важный фактор формирования тропосферного  воздуха, а следовательно и климата Земли. По этому, любые виды человеческой деятельности, приводящие к уменьшению среднего содержания озона в стратосфере, могут иметь весьма серьезные отдаленные последствия для климата, здоровья людей, состояния всей живой природы.
     МЕТАН
     Следующими  по вкладу в парниковый эффект являются метан СН4 и закись азота N2O. Концентрация того и другого газа определяется как естественными, так и антропогенными причинами. Так, естественным источником СН4 являются переувлажненные почвы, в которых происходят процессы анаэробного разложения. Человек добавил свои источники - рисовые плантации, добычу и транспортировку природного газа, сжигание биомассы и др. К естественным поставщикам N2O в атмосферу относятся океан и почвы. Антропогенная добавка связана с сжиганием топлива и биомассы, вымыванием азотных удобрений. Есть предположение, что метан – основная причина потепления. В частности доктор геолого-минералогических наук Н.А. Ясаманов, предполагают, что в нынешнем глобальном потеплении "повинен" в основном метан. Многие "климатические активисты" парниковый эффект и антропогенные выбросы CO2 в атмосферу считают синонимами. Между тем этот газ не поднимается в верхние слои атмосферы, а в нижнем успешно поглощается растительностью и почвенными организмами, растворяется в реках, озерах и морях. Большая часть CO2 тратится на постройку скелета водных организмов и усваивается фитопланктоном, а избыток аккумулируется в донных осадках. Метан же с земной поверхности быстро попадает на границу тропосферы и стратосферы. Мало того что он активно участвует в парниковом эффекте, на высоте 15-20 км под действием солнечных лучей он разлагается на водород и углерод, который, соединяясь с кислородом, образует СО2. Откуда же метан поступает в атмосферу? Он образуется в болотах при гниении органики. Недаром его еще называют болотным газом. В немалых количествах поставляют его и обширные мангровые заросли в тропиках. Попадает он в атмосферу и из тектонических разломов и трещин при землетрясениях. Велики и антропогенные выбросы метана. По оценкам, естественные и антропогенные выбросы составляют примерно 70 и 30%, но последние стремительно растут.
     Последствия  парникового эффекта:
     1. Если температура на Земле  будет продолжать повышаться, это  окажет серьезнейшее воздействие  на мировой климат.
     2. В тропиках будет выпадать  больше осадков, так как дополнительное  тепло повысит содержание водяного пара в воздухе.
     3. В засушливых районах дожди  станут еще более редкими и они превратятся в пустыни в результате чего людям и животным придется их покинуть.
     4. Температура морей также повысится,  что приведет к затоплению  низинных областей побережья  и к увеличению числа сильных  штормов. 
     5. Повышение температуры на Земле  может вызвать поднятие уровня  моря, так как:
     а) вода, нагреваясь становится менее плотной и расширяется, расширение морской воды приведет к общему повышению уровня моря;
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.