На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Нивелирование поверхности

Информация:

Тип работы: реферат. Добавлен: 15.05.2012. Сдан: 2011. Страниц: 4. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание 

Введение………………………………………………………………………………………….3
      Методы съемки………………………………………………………………………….5
      Измерительные устройства……………………………………………………………5
      Методика измерений……………………………………………………………………8
      Нивелирование поверхности……………………………………………………………9
Заключение……………………………………………………………………………………..14
Литература………………………………………………………………………………………15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение
 Геодезия  (греч. gedaisa, от ge – Земля и daio – делю, разделяю), наука об определении положения объектов на земной поверхности, о размерах, форме и гравитационном поле Земли и других планет. Это отрасль прикладной математики, тесно связанная с геометрией, математическим анализом, классической теорией потенциала, математической статистикой и вычислительной математикой. В то же время это наука об измерениях, разрабатывающая способы определения расстояний, углов и силы тяжести с помощью различных приборов. Основная задача геодезии – создание системы координат и построение опорных геодезических сетей, позволяющих определить положение точек на земной поверхности. В этом существенную роль играют измерения характеристик гравитационного поля Земли, связывающие геодезию с геофизикой, использующей гравиметрические данные для изучения строения земных недр и геодинамики. Например, в геофизике геодезические методы измерений применяются для исследования движений земной коры, поднятий и опусканий массивов суши. И наоборот, нарушения во вращении Земли, которые влияют на точность геодезической системы координат, отчасти могут быть объяснены физическими характеристиками литосферы.
 Геодезия  подразделяется на высшую, космическую  геодезию, топографию, фотограмметрию и инженерную (прикладную) геодезию, каждый из этих разделов имеет свой предмет изучения, свои задачи и методы их решения, т. е. является самостоятельной научно-технической дисциплиной.
 Геодезические работы ведутся на трех уровнях. Во-первых, это плановая съемка на местности  – определение положения точек на земной поверхности относительно местных опорных пунктов для составления топографических карт, используемых, например, при строительстве плотин и дорог или составлении земельного кадастра. Следующий уровень включает проведение съемок в масштабах всей страны; при этом площадь и форма поверхности определяются по отношению к глобальной опорной сети с учетом кривизны земной поверхности. Наконец, в задачу глобальной, или высшей, геодезии входит создание опорной сети для всех остальных видов геодезических работ. Высшая геодезия занимается определением фигуры Земли, ее положения в пространстве и исследованием ее гравитационного поля.
 Последнее имеет особенно большое значение, т.к. все геодезические измерения (за исключением расстояний) отчасти зависят от определения направления силы тяжести (совпадающего с направлением отвесной линии). Геодезические приборы (теодолит, используемый для измерения углов и направлений, и нивелир, измеряющий превышения) устанавливаются так, чтобы оси их установочных уровней были параллельны уровневой поверхности, всегда перпендикулярной направлению силы тяжести. Более того, сама форма земной поверхности (70% которой составляют акватории) в общем определяется конфигурацией уровневой поверхности, представляющей собой идеализированную поверхность океана; именно от нее производится отсчет высот конкретных точек (т.н. высота над уровнем моря). В гравитационном поле Земли под уровневой поверхностью понимают поверхность, в любой точке которой помещенное на нее тело остается в состоянии покоя. Конфигурация уровневой поверхности определяется путем измерения силы тяжести.
 Относительное положение точек на поверхности  Земли устанавливается путем  измерения расстояний между ними (при условии, что каждый пункт геодезической сети может непосредственно наблюдаться с нескольких других пунктов). В настоящее время для определения взаимного расположения точек земной поверхности в качестве промежуточных точек используются искусственные спутники Земли, при этом измеряется расстояние между спутником и наземным пунктом. Поскольку эти измеренные расстояния не зависят от ускорения силы тяжести, может показаться, что гравитационное поле Земли не играет существенной роли в геодезических построениях. Однако космическая геодезия, хотя и дополняет традиционные наземные наблюдения, пока не может их заменить. Более того, орбиты самих искусственных спутников определяются гравитационным полем Земли, что опять-таки делает необходимым изучение силы тяжести.
 Геодезия может рассматриваться в геометрическом и физическом аспектах. Геометрические задачи геодезии решаются методами съемки, т.е. измерениями и расчетами расстояний, углов и направлений. Физический аспект связан с измерениями силы тяжести. Геодезические измерения осложняются спецификой используемой системы координат, которая включает широту, долготу и высоту. Уровенные поверхности, по которым устанавливается высота точки, непараллельны вследствие изменений силы тяжести на земной поверхности, обусловленных особенностями рельефа (распределением гор, долин, впадин и пр.) и плотности слагающих Землю горных пород. Подобные же причины нарушают параллельность поверхностей, имеющих одинаковую широту или долготу. Кроме того, на результаты расчетов геодезических показателей, например координат точки, влияют погрешности измерений и используемой физической модели.
 Решение современных задач геодезии связано  с обеспечением и улучшением качества строительства зданий и сооружений, промышленных и жилых комплексов, линий электропередачи и связи, магистральных трубопроводов, энергетических объектов, объектов агропромышленного комплекса и др. для этого требуется большое количество квалифицированных работников, способных обеспечить строительство важных народнохозяйственных объектов.  
 
 

        Методы съемки
 Положение точки на земной поверхности определяется с помощью трех координат: широты (центральный угол, образованный отвесной линией в данной точке с плоскостью экватора, отсчитывается к северу или к югу от экватора), долготы (угол между плоскостью меридиана, проходящего через данную точку, и плоскостью начального меридиана, за который условно принимается Гринвичский меридиан в Англии; отсчет ведется к западу или к востоку от начального меридиана) и высоты (расстояние по отвесной линии между данной точкой и некоторой уровневой поверхностью, например, средним уровнем моря).
 Традиционно горизонтальные и вертикальная координаты рассматриваются порознь и исходные пункты устанавливаются для них  отдельно. Такое различие продиктовано в основном практическими соображениями. Во-первых, основная задача геодезии – определить положение выбранных точек на поверхности Земли. При этом высотное положение меняется в гораздо более узких пределах, чем горизонтальное, и может определяться при помощи более простого математического аппарата. Во-вторых, классические способы измерения высот резко отличаются от тех, что применяются для определения показателей планового положения. Например, горизонтальные углы определяются гораздо точнее, чем вертикальные, при измерении которых возникают ошибки из-за рефракции световых лучей в атмосфере; поэтому измерение вертикальных углов играет меньшую роль в определении высот.
Однако теоретически не существует никаких препятствий  для совместного определения  вертикальных и горизонтальных (плановых) координат. Практически любые измерения высотных и плановых характеристик могут быть обобщены без введения каких-либо особых уровневых поверхностей. Именно такой способ применяется в т.н. пространственной, или космической, геодезии, где определение координат ведется с искусственных спутников и, действительно, нет методических различий в измерении планового положения и высоты. Хотя, в конечном счете, применение спутников может уменьшить потребность в разработке раздельных методов плановых и высотных измерений, различие подходов сохранится для решения многих практических задач.
      Измерительные устройства
 Наиболее  распространенный прибор для измерения  силы тяжести – гравиметр, используемый для относительных измерений, т.е. разности значений силы тяжести в двух пунктах. Основным элементом гравиметра является горизонтальное коромысло, на одном конце которого размещен груз, а на другом находится опора, относительно оси которой коромысло может поворачиваться под действием наклонно расположенной пружины. Один конец пружины крепится к коромыслу вблизи точки размещения груза, второй – к жесткому элементу корпуса прибора. Если в каком-либо пункте указатель шкалы прибора, связанный с положением груза, стоит на нуле, то в другом пункте в связи с изменением силы тяжести (и, соответственно, положения груза) показание на шкале прибора будет отличаться от нуля. Это показание шкалы и определяет разность значений силы тяжести между двумя пунктами. Достоинствами таких гравиметров являются малые размеры и высокая точность (до 0,02 миллигала, мГал).
 Для получения действительного значения ускорения силы тяжести в любом  пункте относительные измерения  в заданном пункте связывают с  данными абсолютных измерений силы тяжести в этом пункте с помощью  баллистического гравиметра, в котором измеряется время падения тела под действием силы тяжести. Расстояние, пройденное этим телом в процессе падения, измеряется лазерным интерферометром, а время падения – высокоточным электронным устройством. Точность измерения баллистическими гравиметрами достигает 0,01 мГал. Для проведения абсолютных измерений силы тяжести требуется большое количество вспомогательного оборудования, поэтому их нецелесообразно проводить при обычных геодезических съемках. Большинство баллистических гравиметров размещается в стационарных лабораториях, однако существуют и транспортабельные устройства, имеющие приемлемые уровни точности измерения.
 Международная гравиметрическая стандартная сеть по состоянию на 1971 включала 10 гравиметрических станций для абсолютных измерений и 1854 пункта для относительных измерений силы тяжести. Эта сеть является основой для проведения большого количества региональных гравиметрических съемок с точностью 0,1–0,2 мГал. Хотя статические гравиметры позволяют получить наиболее точные значения, их использование в полевых условиях требует значительных затрат труда и времени.
 Применение  гравиметров на подвижных основаниях затруднено главным образом тем, что прибор не способен ощутить разницу  между ускорением силы тяжести и  возникающим при этом инерционным (кинематическим) возмущающим ускорением (например, вследствие вертикальных перегрузок при движении автомобиля, корабля или самолета). Тем не менее существуют подобные системы, способные обеспечить точность гравиметрических измерений порядка нескольких миллигал. В них используются усовершенствованные наземные гравиметры либо комплекты акселерометров, измеряющих величину ускорения по всем направлениям. Кинематическая составляющая ускорения вычитается из общего значения, для чего система осуществляет постоянное дифференцирование пройденного расстояния по времени, а полученные скорости после последующего дифференцирования дают искомые значения ускорений. Кроме того, появляется возможность ввести поправки на действие таких редко учитываемых факторов, как ускорение Кориолиса и центростремительное ускорение.
 Для успешного функционирования транспортабельных  гравиметрических устройств необходимо использовать высокоточные современные  системы навигации. В аэрогравиметрических съемках обычно используются бортовые радиолокационные системы с радиолокационными или лазерными альтиметрами (высотомерами). Для достижения необходимой точности учитываются также данные, полученные со спутниковой системы GPS. При измерении градиента силы тяжести (величины изменения ускорения силы тяжести на очень малых расстояниях) обычно пренебрегают учетом положения и ускорения самого аппарата-носителя, однако при этом используются более сложные измерительные приборы. Существующие мобильные системы проведения гравиметрических измерений либо находятся в стадии опытной разработки, либо (как в случае гравиметрической системы, размещаемой на вертолете) используются исключительно в геофизических исследованиях.
 Важную  роль в совершенствовании измерений параметров гравитационного поля Земли сыграло использование радиолокационных альтиметров, размещаемых на борту орбитальных спутников. В принципе, спутниковая альтиметрия достаточно проста: расстояние от спутника до поверхности океана определяется с помощью электронных устройств, измеряющих время, за которое радиоволны проходят это расстояние и обратный путь до бортового приемного устройства после отражения от поверхности океана. Скорость распространения сигнала, умноженная на половину полученного временного отрезка, дает искомое значение высоты. Уровень поверхности океана (приблизительно соответствующий поверхности геоида) относительно центра Земли или относительно поверхности некоего эллипсоида рассчитывается как разность между высотой орбиты спутника (которая постоянно определяется расположенными вокруг земного шара станциями слежения) и значениями измеренной высоты полета спутника над поверхностью океана. Таким образом, при использовании спутниковой системы измерений для определения высотного положения поверхности океана (геоида) на значительной части его площади потребуется несколько месяцев. Поскольку ок. 70% общей площади поверхности Земли приходится на океан, значительная часть ранее не известных данных о гравитационном поле Земли (аппроксимированной в виде геоида) была получена в процессе первых же витков полета специализированного спутника.
 Если  же известна конфигурация конкретной границы (в данном случае уровенной  поверхности) поля силы тяжести, то определение значений силы тяжести становится чисто математической задачей. Первые спутниковые альтиметры имели точность ок. 1 м, а более современные – несколько сантиметров. Основное ограничение точности измерений при использовании спутниковой альтиметрии определяется параметрами горизонтального разрешения при сканировании поверхности океана и высокой скоростью движения спутника. Еще одно ограничение налагает неполнота наших знаний об изменении скорости распространения электромагнитных волн в различных слоях атмосферы. Чтобы воспользоваться преимуществами высокой точности, которую дают современные альтиметры, необходимо добиться сопоставимой точности в определении орбиты спутника и степени расхождения между поверхностью геоида и поверхностью океана, возмущаемой воздействием ветров, течений, температур и других факторов. Фактически многие полеты спутников, выполнявших альтиметрические наблюдения, специально планировали для получения данных об океанических течениях путем повторных замеров высоты по определенным маршрутам. Поверхность геоида, являющаяся постоянной величиной, при этом исключалась из результатов наблюдений, учитывались только изменения уровня океана по отношению к поверхности геоида, позволяющие судить о течениях и других процессах.
      Методика измерений
 Гравитационное  поле Земли принято разделять  на две части: нормальное гравитационное поле и остаточное аномальное поле. В физической геодезии оперируют в основном с аномальным гравитационным полем. Основное преимущество такого подхода состоит в том, что аномальное поле гораздо слабее действительного гравитационного поля Земли и поэтому его характеристики легче определить. Нормальное гравитационное поле характеризуется четырьмя параметрами: общей массой Земли; формой и размерами эллипсоида, наиболее близко соответствующего геоиду в глобальном масштабе; скоростью вращения Земли. Его определение вытекает из условия, что поверхность эллипсоида – это уровенная поверхность в нормальном гравитационном поле, а поверхность геоида представляет собой уровенную поверхность в действительном гравитационном поле (нормальное поле объясняет также существование негравитационной, центробежной, силы, которая возникает вследствие вращения Земли вокруг своей оси). При этом предполагается, что центр нормального эллипсоида (или референц-эллипсоида) совпадает с центром масс Земли. В любой точке разность высот геоида и референц-эллипсоида, называемая ондуляцией геоида, прямо пропорциональна возмущающему потенциалу (потенциал силы тяжести – одна из важнейших характеристик гравитационного поля Земли). Таким образом, определение аномального гравитационного поля (путем гравиметрических измерений) позволяет определить положение поверхности геоида по отношению к эллипсоиду и отсюда – форму Земли. Если нам известна форма геоида, то известно и направление силы тяжести, которое в каждой точке перпендикулярно к поверхности геоида. Следовательно, можно найти уклонение отвесной линии, т.е. угол между направлением силы тяжести и перпендикуляром к поверхности эллипсоида.
 В математической физике существуют т.н. граничные, или  краевые задачи, формулируемые примерно следующим образом. Если изменения некоторой величины, например возмущающего потенциала, подчиняются какому-то закону и эта величина (или связанная с ней) принимает определенное значение на какой-то граничной поверхности, то можно определить значение этой величины в любой точке пространства. В геодезии сила тяжести определяется прямыми измерениями; таким образом задача состоит в том, чтобы определить возмущающий потенциал на земной поверхности и над ней. Однако в геодезии краевая задача осложняется тем, что граничная поверхность (в данном случае физическая поверхность Земли), определяемая относительно геоида, представляет собой искомую величину, которая определяется в последнюю очередь; поэтому это еще одна неизвестная величина, входящая в задачу. С теоретической точки зрения, это одна из самых трудных проблем в геодезии, для которой получены пока только приближенные решения.
 Ирландский  математик Дж.Стокс в 1849 первым решил  геодезическую краевую задачу при  условии, что ускорение силы тяжести известно в любой точке поверхности геоида (рассматриваемой в данном случае как граничная поверхность). Однако, определить силу тяжести на всей земной поверхности очень нелегко, а измерять силу тяжести на поверхности геоида на суше вообще невозможно. Единственно возможное решение состоит в том, чтобы рассчитать ускорение силы тяжести для геоида, используя данные измерений на земной поверхности и вводя поправку за аномалию высоты. Этот метод требует также учета гравитационного воздействия масс земной коры, находящихся между топографической поверхностью и поверхностью геоида.
 В конце 1950-х годов советский геодезист  М.С.Молоденский нашел решение, пригодное  для любой произвольной поверхности (в т.ч. топографической); эта поверхность может быть описана по гравиметрическим данным. Хотя это решение также приближенное, оно представляет шаг вперед, т.к. не требует знания плотностной структуры верхней части земной коры, как это требовалось в решении Стокса. В обоих случаях величина ускорения силы тяжести вблизи той точки, где должна быть определена поверхность геоида, оказывает гораздо более сильное влияние, чем в более удаленных областях. Отсюда следует, что требования к точности измерений силы тяжести в глобальном масштабе могут быть не столь строгими.
      Нивелирование поверхности
    Съемку в равнинной местности  с небольшим количеством контуров  при высоте сечения рельефа  через 0,1; 0,25; 0,5 м выполняют нивелированием поверхности. Существует несколько способов такой съемки: по квадратам, параллелям, характерным линиям рельефа. Во всех способах высоты пикетов определяют геометрическим нивелированием. Различие состоит лишь в схеме определения плавного положения пикетных точек.
     При нивелировании по квадратам с помощью теодолита и мерного прибора на местности разбивают и закрепляют колышками сетку квадратов. Вначале разбивают квадраты со сторонами 100, 200 или 400 м. затем с помощью вешек и мерного прибора разбивают сетку на более мелкие квадраты со стороной 40 м для съемки в масштабе          1 : 2000 и 20 м – для съемки в масштабах 1 : 1000 и 1 : 500. При разбивке квадратов ведут съемку ситуации, определяя положение контурных точек на пересечении со сторонами квадратов. Результаты съемки заносят в абрис (рис. 1. К пунктам государственной геодезической сети сетку привязывают положением теодолитных и нивелирных ходов. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Рис. 1. Абрис съемки способом нивелирования  по квадратам (стрелками указано направление скатов) 

     Порядок нивелирования квадратов зависит от их размера. При сторонах квадратов 100 м и более с одной станции нивелируют вершины одного квадрата, при меньшем размере – нескольких квадратов. При этом нивелир устанавливают примерно посередине большого квадрата, а рейку последовательно размещают на всех вершинах и берут отсчеты. Отсчеты записывают непосредственно на схеме квадратов. Последовательно переставляя нивелир и рейки, нивелируют вершины всех квадратов. С каждой последующей станции нивелируют две или более связующие точки предыдущего квадрата. Это позволяет помимо передачи отметки выполнять контроль измерений. Результаты измерений контролируют, сравнивая суммы                                     накрест лежащих отсчетов по общей строне двух смежных квадратов. Расхождение между этими суммами не должно превышать 10 мм. Высоты вершин квадратов вычисляют как по связующим точкам, так и через горизонт прибора.
     При нивелировании по параллельным линиям на участке съемки прокладавают один или несколько параллельных магистральных ходов. В обе стороны от каждого хода разбивают перпендикулярные линии (поперечники). По ходам и поперечника через равные промежутки закрепляют пикетные точки через 40 м при съемке в масштабе 1 : 2000 и через 20 м – при съемке в масштабах 1 : 1000 и 1 : 500. Вместе с разбивкой пикетажа производят съемку ситуации. Высоты пикетных точек определяют геометрическим нивелированием.
 При геометрическом нивелировании используется нивелир с цилиндрическим уровнем и зрительной трубой, ось которой устанавливается параллельно уровневой поверхности в данном месте приведением пузырька уровня на середину ампулы. Есть нивелиры с компенсатором, в которых ось зрительной трубы приводится в горизонтальное положение автоматически, с помощью компенсаторной призмы. Помещая нивелир между двумя точками (рис. 1) и производя отсчет по двум нивелирным рейкам, установленным вертикально в этих точках, определяют превышение между этими точками. Превышения также могут быть найдены непосредственным измерением вертикального угла (по отношению к горизонтальной плоскости или к зениту); такое измерение осуществляется с помощью теодолита, установленного в одной точке и направленного на другую точку. В таком случае необходимо знать расстояние между этими двумя точками. Этот метод известен как тригонометрическое нивелирование; он применяется чаще всего в условиях пересеченной местности с крутыми склонами, где геометрическое нивелирование неприменимо. Тригонометрическое нивелирование вследствие атмосферной рефракции уступает в точности геометрическому нивелированию.
 
 Рис. 1. ГЕОМЕТРИЧЕСКОЕ НИВЕЛИРОВАНИЕ для определения превышений. Нивелир помещается примерно посредине между двумя проградуированными рейками в точках А и В. Визирный луч указывает отсчеты на рейках А' и B'. Разность длин отрезков АА' и BB' и является разностью высот точек А и В, т.е. превышением точки В над точкой А.
 Высотное  положение точек устанавливается  посредством создания нивелирных сетей, состоящих из отдельных линий  – нивелирных ходов; превышение по нивелирному ходу определяется как сумма превышений на станциях (между отдельными точками внутри хода); при этом превышение на станции получается как разность отсчетов на заднюю и переднюю нивелирные рейки. Нивелирные ходы прокладываются таким образом, что они начинаются и кончаются в одной и той же точке, образуя полигон; это помогает выявить погрешности измерений, т.к. сумма превышений для замкнутого нивелирного хода должна быть равна нулю и отличие ее от нуля указывает на сумму погрешностей. Поскольку конфигурация уровневых поверхностей зависит от гравитационного поля Земли (например, присутствие аномально большой массы в каком-либо месте вызывает заметное «вспучивание» уровневой поверхности), эти поверхности не параллельны. Из-за того, что визирный луч нивелира устанавливается параллельно уровневой поверхности в данном месте, измеренные превышения также зависят от силы тяжести. Для выполнения высокоточного нивелирования его данные должны дополняться гравиметрическими измерениями. Высота топографической поверхности над средним уровнем моря называется ортометрической высотой. Ортометрическая поправка рассчитывается с помощью гравиметрических наблюдений; введение этой поправки позволяет учесть не параллельность уровневых поверхностей.
 Уровневая поверхность, ближе всего соответствующая среднему уровню Мирового океана (т.н. среднему уровню моря), называется поверхностью геоида (рис. 2). На суше эта поверхность представляет собой продолжение уровня моря под материками. Именно эта поверхность служит в качестве нулевой, от которой традиционно отсчитываются абсолютные высоты. Средний уровень моря определяется по данным систематических наблюдений (мониторинга) за приливами. Однако установление нулевой отметки высот по среднему уровню моря затруднено тем, что в региональных масштабах он не является строго выдержанным; поверхность моря отклоняется до нескольких десятков сантиметров от горизонтали под влиянием преобладающих ветров, течений, колебаний температуры и солености воды и атмосферного давления. В масштабе какой-либо одной страны нулевой уровень высот определяется на основании осредненных показателей многолетних замеров на нескольких водомерных постах. Однако, поскольку отклонения измеренного среднего уровня моря от истинной уровневой поверхности слишком велики, не представляется возможным принять единый глобальный нулевой уровень, базирующийся на замерах уровня моря.
 
 ГЕОИД – фигура Земли, ограниченная уровенной поверхностью, совпадающей со средним уровнем Мирового океана при спокойном состоянии водных масс и продолженной под континентами. Общий земной эллипсоид представляет собой геометрическую фигуру, наиболее точно аппроксимирующую поверхность геоида. Угол между отвесной линией в данной точке и перпендикуляром к поверхности эллипсоида называется уклонением отвесной линии. Отклонения (положительные или отрицательные) геоида относительно эллипсоида называют ондуляциями геоида.
 В США  нивелирные сети подразделяются на сети 1-го, 2-го и 3-го классов в соответствии с необходимой точностью, расстоянием между отдельными пунктами, общей протяженностью и методом нивелирования. Наиболее точные сети 1-го класса представляют собой главную основу, устанавливающую единую систему высот для всей страны. Сети 2-го класса дополняют и сгущают более точные сети 1-го класса. В этих сетях расстояния между узлами и соседними пунктами, закрепленными на местности специальными марками и реперами, меньше, чем в сетях 1-го класса. Сети 3-го класса прокладываются для непосредственного высотного обоснования инженерно-технических проектов и крупномасштабных топографических съемок. Их точность определяется конкретными требованиями в каждом отдельном случае. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Заключение
 Благодаря применению современных приборов и  методов измерений появилась  возможность вносить коррективы в систему геодезических координат. Однако такие уточнения довольно редки, поскольку система координат  должна быть довольно жесткой, и все же в некоторых случаях, например, при изучении землетрясений, гравиметрические и чисто геодезические работы учитывают и временной аспект событий.
 В 1960-х  годах, когда очень активно велись исследования Луны, большинство задач, связанных с определением местоположения, навигацией и картографированием, решались геодезическими методами. Сейчас совершенно ясно, что методики, разработанные для изучения Земли, могут быть использованы на любой другой планете, хотя конечно, в каждом случае это будет сопряжено со специфическими трудностями. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Литература
    Григоренко А.Г., Киселев М.И. Инженерная геодезия. – М.: Высшая школа, 1983.
    Инженерная геодезия. Учеб. для вузов / Е.Б. Колюшин, М.И Киселев, Д.Ш. Михелев, В.Д. Фельдман; Под ред. Д.Ш. Михелева. – М.: Высш. шк., 2000. – 464 с.: ил.
    Левчук Г.П., Новак В.Е., Конусов В.Г. прикладная геодезия. Основные методы и принципы инженерно-геодезических работ. – М.: Недра, 1981.

и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.