На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Расчет количества печатных форм на тираж

Информация:

Тип работы: курсовая работа. Добавлен: 15.05.2012. Сдан: 2011. Страниц: 15. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Реферат 

      Записка 28 с., 4 рис., 4 табл., 8 источников.
      Фотополимерные  пластины, экспонирование, лазерная гравировка, флексографская печать, негативное копирование, финишинг.
      Объектом  анализа являются печатные формы флексографской печати.
      Цель  работы заключается в сравнении основных особенностей изготовления печатных форм флексографской печати.
    В процессе работы были рассмотрены особенности строения и изготовления форм. Отдельная глава посвящена проблемам выбора технологий, материалов и оборудования, возникающим при печати флексографским способом
      Результаты  сравнения печатных форм выявили преимущества и недостатки технологических процессов, а также был выбран оптимальный способ изготовления формы для представленного образца. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Содержание 

Введение………………………………………………………………………………………….3
1 Техническая характеристика изделия ……………………………………………………….4
2 Общая технологическая схема изготовления изделия …………………………...................5
3 Сравнительный анализ изготовления полимерных форм флексографской печати………6
3.1 История развития флексографской печати ...……………………………………...………6
3.2 Разновидности пластин …………………………………………...………………………...8
3.3 Общие схемы  изготовления печатных форм различными  способами………………….12
3.3.1 Негативное  копирование…………………………………………………………………12
3.3.2 Технологии  СТР…………………………………………………………………………..16
3.3.2.1 Технология  прямого лазерного гравирования (LEP)………………………………...16
3.3.2.2 Косвенное  лазерное гравирование……………………………………………………18
4 Выбор технологии, оборудования и материалов для  изготовления образца…………….21
4.1 Выбор технологического  процесса……………………………………………………….21
4.2 Выбор основного  оборудования ………………………………………………………….22
4.3 Выбор материалов………………………………………………………………………….24
4.4 Технологические  инструкции……………………………………………………………..25
    5 Расчет  количества печатных форм на  тираж……………………………………………….26
Заключение……………………………………………………………………………………..27
Список использованных источников…………………………………………………………28
Приложения 
 
 
 
 
 
 
 
 
 
 
 

Введение 

    В получение любого печатного оригинала  непременно присутствует стадия изготовления печатных форм. Формные процессы – одна из важнейших стадий, на которой определяется качество будущей продукции. Получение высококачественной печатной формы требует применение специальных формных материалов и тщательной их обработки.
    С приходом СtP-технологии этап изготовления печатных форм перешел в стадию допечатной подготовки. Вывод CtP-форм - новая услуга для типографий, работающих на рынке  коммерческой печати. Печатные CtP-формы  применяются для ролевой и  листовой офсетной печати (на бумаге).
    В настоящее время на российских предприятиях широко начала использоваться технология Computer-to-Plate (CtP), являющаяся основным способом изготовления печатных  форм в европейских странах. Данная технология позволяет исключить из процесса изготовление фотоформы, что ведет к сокращению сроков изготовления печатных форм. Внедрение технологии CtP позволяет повысить качество изображения на печатных формах и улучшить экологические условия на полиграфическом предприятии. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Технология СТР 

1.1 Основные типы  устройств СТР
   В настоящее время по технологии CTP изготовляют формы офсетной, высокой, флексографской и глубокой печати. Для записи изображения на формный  материал при изготовлении офсетных и фотополимерных форм высокой и  флексографской печати применяются устройства двух принципиально разных типов. К первому типу устройств, получивших широкое распространение, относятся лазерные экспонирующие установки (формовыводные устройства), в которых элементы изображения создаются на светочувствительных или термочувствительных формных материалах по действием светового или теплового лазерного излучения. В устройствах второго типа источником экспонирующего излучения служит мощная УФ-лампа. При этом экспонирование осуществляется через специальный чип DMD, содержащий множество управляемых микрозеркал, или светопереключаемую линейку LSA, элементы которой могут пропускать свет под действием управляющих сигналов.
  В современных системах CTP, ориентированных  на изготовление офсетных и фотополимерных форм высокой и флексографской печати, применяют лазерные формовыводные устройства трех основных принципов (рис.1):
  - барабанные, выполненные по технологии "внутренний барабан", когда форма расположена на внутренней поверхности неподвижного цилиндра;
  - барабанные, выполненные по технологии "внешний барабан", когда форма расположена на наружной поверхности вращающегося цилиндра;
  - планшетные, когда форма расположена в горизонтальной плоскости неподвижно или совершает движение в направлении, перпендикулярном направлению записи изображения.
  Достоинствами устройств первого принципа построения являются достаточность одного источника  излучения, благодаря чему достигается  высокая точность записи; простота фокусировки и отсутствие необходимости  юстировки лазерных лучей; большая оптическая глубина резкости; простота установки перфорирующего устройства для штифтовой приводки форм; простота замены источников излучения (исчезающая при использовании твердотельных лазеров).
  Внешнебарабанные  устройства имеют такие достоинства, как невысокая частота вращения барабана благодаря наличию многочисленных лазерных диодов; долговечность лазерных диодов; невысокая стоимость запасных источников излучения; возможность экспонирования больших форматов. К их недостаткам относят необходимость значительного числа лазерных диодов и, как следствие, такого же числа информационных каналов; необходимость трудоемкой юстировки; невысокую глубину резкости; сложность установки устройств для перфорирования форм.
  И в том, и в другом случаях экспонирование термочувствительных формных пластин выполняется в инфракрасной области спектра. При этом заметны преимущества внешнебарабанного принципа, позволяющего максимально приблизить источник энергии к поверхности печатной формы. У устройств с записью на внутреннюю поверхность барабана расстояние от пластины до развертывающего элемента, как правило, соответствует радиусу барабана и становится тем больше, чем больше формат пластины. Для того чтобы генерировать исключительно маленькую и резкую точку на таком расстоянии, требуется дорогостоящая оптика.
  При записи печатных форм скоростные характеристики формовыводных устройств существенно  зависят от чувствительности формного материала. Внешние барабаны вращаются  сравнительно медленно. Например, при  записи термочувствительных материалов частота вращения барабана составляет 150 об. /мин. Более короткое время экспонирования печатной формы достигается увеличением числа лазерных диодов. При этом вероятность сбоев при работе возрастает с увеличением числа диодов.
  Таким образом, если рассматривать тенденцию дальнейшего развития систем CTP, то можно заметить, что для печатных форм форматом до 70х100 см существуют одинаковые условия для обоих принципов записи изображений. Для больших форматов печатных форм определенные преимущества имеет техника с внешним барабаном. Планшетный способ широко применяется в области форматов до 50х70 см для газетного производства. Причем в последнем случае его преимущества объясняются именно небольшими форматами и достаточностью относительно низких разрешений.
  В настоящее время для экспонирования печатных форм применяются следующие  типы лазерных источников света:
  1) аргон-ионный голубой лазер с  длиной волны 488 нм;
  2) гелий-неоновый красный лазер  с длиной волны 633 нм;
  3) маломощный красный лазерный диод с длиной волны 670 нм;
  4) инфракрасный мощный лазерный  диод с длиной волны 830 нм, который  получил распространение для  экспонирования термочувствительных  пластин, требующих более высоких  энергетических затрат, и применяется  в устройствах с внешним барабаном;
  5) инфракрасный мощный лазер ND YAG на иттрий-алюминиевом гранате  с неодимом с длиной волны  1064 нм, используемый во многих  системах CTP благодаря следующим  достоинствам:
  - Небольшая длина волны позволяет получить пятно диаметром менее 10 мкм и значительно повысить разрешение системы при записи;
  - Минимальные потери при прохождении по световолоконным световодам и легкость модулирования упрощают конструкцию лазерных установок;
  значительное  число известных материалов (в  особенности металлы) имеют более высокий коэффициент поглощения в области длин волн 1,06 мкм, что облегчает разработку формных пластин и повышает эффективность лазерной записи;
  6) зеленый лазер на иттрий-алюминиевом  гранате с двойной частотой ND YAG с длиной волны 532 нм;
  7) фиолетовый лазерный диод с длиной волны 400-410 нм, который позволяет использовать обычные светочувствительные пластины, применяемые для контактного копирования.
  В зависимости от типа источника лазерного  излучения различные фирмы предлагают специальные формные пластины, которые можно разделить на фотополимерные, серебросодержащие, с гибридными слоями, с термочувствительными слоями. 

1.2 Формовыводные устройства  для лазерной записи  офсетных печатных  форм
  Основой лазерных формовыводных устройств  является оптико-механическая система, содержащая в зависимости от конструкции один или несколько лазеров, модулятор, телескоп, фокусирующую линзу, поворотные зеркала, вращающийся зеркальный дефлектор, механизм крепления и перемещения формной пластины, механизм перемещения оптической или термической головки.
1.2.1 Устройства с внешним  барабаном
  Запись  изображения на формных пластинах  в этих устройствах может осуществляться методом однолучевого или многолучевого  сканирования. В первом случае устройства оснащены одним лазером, экспонирующим светочувствительный или термочувствительный слой формного материала. Для многолучевого сканирования записывающая головка формовыводного устройства содержит несколько лазеров (лазерных диодов). При этом число экспонирующих лазерных лучей может быть равно числу лазеров или быть больше этого числа. 


Лазерное  сканирующее устройство с однолучевой  записью формной пластины (рис.2) работает следующим образом. Формная пластина 16 закрепляется на барабане 15, который установлен на станине 14, и вращается электродвигателем постоянного тока 12 через механизм привода 13. На одном валу с барабаном 15 расположен оптоэлектронный преобразователь 11 угловых перемещений в цифровой код. Вдоль образующей барабана на станине установлен ходовой винт 9, на валу которого расположен шаговый электродвигатель 10. При работе шагового электродвигателя 10 ходовой винт 9 вращается, и благодаря этому каретка 7 с записывающей головкой, содержащей фокусирующую линзу 6 и зеркало 3, перемещается вдоль образующей барабана. В качестве источника излучения используется твердотельный YAG-лазер 1, работающий в ИК-диапазоне спектра на длине волны 1,064 нм с выходной мощностью 15-20 Вт и оснащенный системой охлаждения 8. Лазерный луч модулируется акустооптическим модулятором 2 и далее через систему зеркал 3, диафрагму 4, телескоп 5 попадает в линзу 6, которая фокусирует его в пятно малого размера на поверхности формной пластины, закрепленной на вращающемся барабане 15. Развертка по строке осуществляется вращением барабана и контролируется оптоэлектронным преобразователем угловых перемещений 11, а развертка по кадру - вращением (с помощью шагового электродвигателя 10) прецизионного ходового винта 9, по которому движется каретка 7 записывающей головки 

1.2.2 Формовыводные устройства  для записи пластин,  расположенных на  внутренней поверхности  барабана
  Такие устройства состоят из трех последовательно  соединяемых секций: ввода, экспонирования и вывода. Секция ввода предназначена для размещения кассеты или нескольких кассет с формными пластинами, автоматического или ручного ввода пластин в секцию экспонирования. Секция экспонирования служит для записи изображения и пробивки штифтовых отверстий в формной пластине. Секция вывода передает экспонированную пластину непосредственно в процессор для обработки форм или выводит пластину на приемное устройство. 

 

  ит  одновременно с транспортированием экспонированной пластины в проявочный процессор. В результате время загрузки/выгрузки сокращается практически в 2 раза.
  Секции  экспонирования некоторых формовыводных  устройств в зависимости от того, какой тип пластин предполагается использовать, могут быть оснащены разными лазерами. Оптическая система (рис.8) устройствВсе три секции объединены системой транспортирования пластин, конструкция которой в разных моделях формовыводных устройств имеет свои особенности. Так, система транспортирования, представленная на рис.7а, передает пластины из кассеты с вертикальным их размещением в секцию экспонирования также в вертикальном положении. В секции экспонирования пластина с помощью вакуума располагается на внутренней поверхности барабана. После пробивки штифтовых отверстий и экспонирования пластина вновь принимает вертикальное положение и передается в секцию вывода. В секции вывода пластина из вертикального положения переводится в горизонтальное и выходит на приемное устройство или в подсоединенный к нему процессор.
  В транспортирующей системе (рис.7б) пластина, находящаяся в кассете или  вставляемая оператором в секцию ввода, расположена в горизонтальной плоскости. В таком положении  она передается в секцию экспонирования. При этом прокладочная бумага отделяется от формной пластины. В секции экспонирования пластина засасывается вакуумом и плотно прилегает к внутренней поверхности барабана. Экспонированная пластина с пробитыми штифтовыми отверстиями в горизонтальном положении поступает в секцию вывода.
  Схема системы транспортирования (рис.7в) автоматически удаляет прокладочную бумагу и выбирает пластины из двух подающих кассет. Загружаются и выгружаются  пластины частично параллельно по времени: пока экспонированная пластина извлекается  из барабана, следующая пластина подается из кассеты к точке входа в барабан; загрузка чистой пластины в барабан происхода, которое может иметь ND YAG-лазер мощностью 10 мВт с длиной волны 532 нм или мощностью до 100 мВт с длиной волны 1064 нм, обеспечивает высокоточную запись изображения с разрешением от 1270 до 3386 dpi. В этой системе луч лазера проходит через затвор 2, плоскопараллельную пластину 3 и модулируется акустооптическим модулятором 4. В зависимости от требуемого разрешения поворотом турели 5 на оптическую ось устанавливается одна из линз, которая соответственно разрешению формирует апертуру лазерного луча. 

 

1.2.3 Планшетные формовыводные  устройства
  В отличие от барабанных формовыводные устройства с записью формных пластин, расположенных в плоскости, практически не деформируют пластины во время загрузки и экспонирования. Это позволяет работать с пластинами разного формата и толщины с одинаково высокой точностью. Система позиционирования автоматически выравнивает края пластины и фиксирует ее с помощью вакуума на подвижном столе, что исключает самопроизвольное смещение пластины во время экспонирования.
  В устройстве с плоскостной записью  формных пластин, соединенном в линию с проявочным процессором (рис.9) в качестве источника света использован лазерный диод с длиной волны 633 нм.
  Специальная оптическая система имеет двойную  фокусировку луча: до и после многогранного  зеркала. Оптическая система компенсации  нелинейности развертки и угла поворота луча обеспечивает точное соблюдение геометрических размеров изображения.
  Подача  информации на модулятор лазера ускоряется буфером на двух жестких дисках емкостью по 1 Гбайт. Пока информация с одного диска выводится на пластину, растровый процессор записывает следующую битовую карту на второй диск. Такое решение позволяет передвигать пластину в зоне экспонирования плавно с постоянной скоростью, обеспечивая высокую точность совмещения.
  Благодаря высоким скоростям работы (до 1014 мм/мин) на низких разрешениях (1200 dpi) устройство является незаменимым для газетного производства. 

 

  Формовыводное устройство обеспечивает гарантированную точность совмещения до 25 мкм на четырех последовательных пластинах, что при разрешениях до 3000 dpi позволяет использовать машину для подготовки форм самого высокого качества. При этом скорость записи составляет около 200 мм/мин. 

 

  Существуют  плоскостные формовыводные устройства, в которых изображение на формной  пластине записывается методом субрастрового  сканирования (рис.10). Для этого записывающая головка, оснащенная ND YAG-лазером 1, зеркалом 2, акустооптическим модулятором 3 и фокусирующим объективом 4, совершает непрерывное возвратно-поступательное движение по одной оси координат и стартстопное поступательное движение по другой оси. Акустооптический модулятор 3 работает в режиме акустооптического дефлектора, производя одновременно модуляцию и отклонение луча перпендикулярно возвратно-поступательному движению записывающей головки. Таким образом, за один проход головки от одного края пластины 5 до другого записывается целая полоска изображения небольшой ширины. После записи полоски на пластине, размещенной на вакуумной плите, записывающая головка перемещается на ширину этой полоски и, возвращаясь в исходное положение, записывает следующую полоску и т.д. В результате изображение на формной пластине формируется из отдельных полосок, записанных ортогональными точечно-растровыми строками небольшой длины. Конструкция механизма перемещения записывающей головки по двум координатам представлена на рис.11. 


  Формовыводное устройство (рис.12) оснащено тремя кассетами  для формных пластин и механизмом их смены 1. С помощью устройства подачи 2 пластина размещается на вакуумной плите 3, над которой перемещается в двух направлениях записывающая головка 4. По окончании экспонирования пластина по транспортеру 5 подается в процессор 6 для обработки форм.
  При этом разрешение может достигать 3400 dpi, а повторяемость форм 5 мкм. Время записи формы зависит от разрешения и формата пластины. Для среднего формата и разрешения оно составляет около 3 мин. 

 

2. Технические  характеристики устройств CTP
  Возвращаясь к технологии CTP, отметим, что предпосылками  для её создания и воплощения в  виде промышленного оборудования были:
  - наличие мощных издательских систем;
  - наличие отработанной и оправдавшей себя технологии CTF (computer-to-film, с компьютера на плёнку);
  - развитие технологии прецизионного лазерного экспонирования, увеличение мощности лазеров;
  - создание высокочувствительных, дешёвых и качественных материалов, идентичных по свойствам серебросодержащим фотоматериалам с высокой разрешающей способностью.
2.1 Производительность систем CTP.
  Это скорость экспонирования форм в штуках определённого формата и с  конкретным разрешением за единицу  времени. Необходимо учитывать, что  общая производительность формного участка зависит и от установленных устройств: непосредственно само выводное устройство - плейтсеттер, растровый процессор, многокассетный загрузчик пластин разных форматов, приёмный стекер, проявочная машина. Неразумно покупать скоростной (и дорогой) плейтсеттер с ручной загрузкой. Вся линия устройств должна быть сбалансирована по скорости.
2.2 Разрешение.
  Давно перестало быть предметом для  гонки производителей, стандартных  значений 2400 или 2540 dpi хватает с избытком для решения всех задач типографии, хотя многие заявляют разрешение много больше 3000 dpi, а у Screen есть модели и на 4000 dpi. При выводе форм на "фиолетовых" CTP всегда можно снизить разрешение и тем самым увеличить скорость экспонирования. 

2.3 Программное Обеспечение.
  Растровый процессор (RIP). Часть устройств по умолчанию поставляются только с программой управления, работающей с однобитными TIFF-файлами, которые предварительно надо получить при помощи какого-то RIP. Подавляющее большинство устройств CTP имеет растровый процессор. Различные программные модули могут обеспечивать дополнительные функции: стохастическое растрирование, оптимизация цветоделения с целью снижения расхода краски, гибридное растрирование вроде Agfa: Sublima или Screen Spekta 2, которая позволяет улучшать воспроизведение деталей при обычном разрешении и без перенастройки печатного процесса. Все продаваемые в России аппараты Kodak поддерживают стохастическое, гибридное и высоколиниатурное растрирование - первое и последнее, как правило, штатно включено в комплект поставки. По информации "НИССЫ", часть заказчиков активно применяет стохастическое растрирование.
  Цветопроба. Все растровые процессоры позволяют  выводить на широкоформатном принтере корректурные оттиски форм, поддерживают функцию цветопробы или имеют  такую опцию. При этом корректура и цветопроба могут печататься из исходных PS - или PDF-файлов, из промежуточных форматов RIP или однобитных TIFF-файлов сепараций.
  Управление  техпроцессом. Все изготовители предусматривают  работу устройств в АСУ техпроцессом. Это пригодится типографиям, у которых  уже работает программа АСУ, но нужно убедиться в совместимости ПО. Или же производитель CTP предлагает купить в дополнение к CTP "родную" систему управления. Опция это недешёвая и может потребовать значительных затрат не только в момент приобретения, но и внедрения. Поэтому нужно чётко понимать, какую выгоду вы можете приобрести. Для маленьких типографий или печатающих один заказ в смену она может и не пригодиться.
2.4 Приводка.
  Есть  несколько вариантов создания форм с хорошей приводкой: предварительная  перфорация и позиционирование пластины по штифтам перед экспонированием, позиционирование пластины в CTP по верному углу или по передней кромке. Предварительная перфорация обеспечивает точную приводку изображения на форме по отношению к штифтам без дополнительных устройств. Печатные машины требуют разную перфорацию, поэтому если в типографии машины разных производителей, понадобится опция с перфорацией под все виды штифтовой приводки. Другой вариант универсален и значительно дешевле, но менее стабилен и требует дополнительного оборудования: как минимум, нужен ручной перфоратор и умелые руки оператора.
2.5 Источники светового излучения.
  Источники света определяются типом пластин. Серебросодержащие и фотополимерные формы требуют недорогого фиолетового  лазера. Его невысокая мощность оборачивает значительный срок службы, например фирменная гарантия на лазеры cистем Fujifilm составляет 5 лет.
  Термальная  технология требует больше энергии  на поверхности пластины в процессе экспонирования, поэтому срок службы линеек термальных лазеров меньше, а стоимость изготовления больше. Это связано с тем, что у термальных пластин чувствительность ниже, чем у фиолетовых, - последние можно быстрее экспонировать.
  Выход из строя одного лазера замедляет  работу устройства, иногда значительно. Поэтому в Agfa Avalon N8 серий 50 и 70, Kodak Magnus серии Quantum и TrendSetter, Screen PlateRite 8800 используют другую схему. Лучи нескольких лазеров сначала собираются вместе, затем общий луч вновь разделяется на несколько, и каждый модулируется отдельно. Тогда при выходе из строя одного или даже нескольких лазеров увеличивается мощность остальных (благо, запас у них есть), и устройство продолжает работать на той же скорости.
  Для экспонирования традиционных пластин  в basysPrint UV-setter и Luesher Xpose! UV есть несколько обычных фиолетовых диодов, к излучению которых УФ-пластины чувствительны.
  Качество  изображения у всех технологий уже  давно сравнялось, поэтому можно  со спокойной совестью говорить, что  все они пригодны и для коммерческой, и для газетной печати.
2.6 Автоматизация.
  Самая простая опция - проявка в линию. Против только два довода (и оба  неубедительные) - "нет места" и "дорого". Правда, есть устройства, которые проявку в линию не поддерживают: Agfa: Advantage N-M, Cobra от HighWater и Speedsetter от Xante, Screen PlateRite Niagara. Весьма популярна опция автоматической подачи форм из кассетного загрузчика. В сочетании со встроенной пробивкой форм получается линия по созданию готовых для установки в печатную машину форм. Прямая экономия на операторах CTP - они больше не нужны. Есть типографии, где этим воспользовались в полной мере: задание на вывод отправляет оператор препресса, а формы забирает печатник, больше никого в этом процессе нет. Так решается одна из задач вспомогательного процесса - экономия. Нужно учитывать, что наибольшую выгоду все опциональные устройства приносят только в комплексе.
2.7 Тиражестойкость.
  Какой бы высокой ни указывалась тиражестойкость, производитель получает цифру в  идеальных условиях работы. Для реальной жизни нужно учитывать совершенство выводного устройства, его возраст, режим изготовления формы. Стойкость термальных пластин сейчас велика, хотя обычно и ниже заявленной производителем. Обжиг пластин увеличивает их стойкость. Но если взглянуть на цифры обычных тиражей любой коммерческой типографии, то вряд ли там обнаружится слишком много заказов свыше 20 тыс. отт., большой тираж - это скорее исключение. Всё больше в структуре заказов становится тиражей не то, что меньше 1000-2000 отт., а даже меньше 500. Высокая тиражестойкость форм нужна в первую очередь типографиям, печатающим упаковку и этикетку, но они сами всё прекрасно понимают и делают соответствующие выводы о технологии CTP.  
 
 
 
 
 
 
 

3 Общая технологическая схема изготовления
  Технология  «компьютер — печатная форма» — это способ изготовления печатных форм, при котором изображение на форме фиксируется под действием лазерного излучения тем или иным методом на основе цифровых данных, полученных непосредственно из компьютера. При этом мощность и длина волны излучения должны быть согласованы со свето- или термочувствительностью формной пластины и основными параметрами формовыводного устройства (производительностью, форматом, разрешением).
  Основными устройствами комплексов формного оборудования для офсетного производства являются формовыводное устройство с растровым процессором и процессор для обработки офсетных пластин (рис. 1). В зависимости от производственных потребностей комплексы могут быть оснащены дополнительным оборудованием. Так, для повышения тиражестойкости пластин после процессора для обработки офсетных пластин ставится печь обжига. При использовании негативных термальных пластин необходима печь предварительного обжига, устанавливаемая до процессора для обработки офсетных пластин. При отсутствии в формовыводном устройстве встроенного механизма для пробивки штифтовых отверстий требуется перфоратор для штифтовой приводки. Для функционирования формного участка необходимы также программное обеспечение, управляющее растровым процессором, и контрольно-измерительные приборы. Для беспроцессорной технологии комплекс формного оборудования не содержит процессора для обработки офсетных пластин, поскольку экспонированная пластина не нуждается в химической обработке.  


Рис. 1. Типовой комплекс формного оборудования для изготовления офсетных печатных форм
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.