На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Параллельность, коллинеарность, перпендикулярность. Коллинеарность векторов. Коллинеарность трёх точек. Перпендикулярность отрезков. Углы и площади. Угол между векторами. Площадь треугольника. Многоугольники. Прямая и окружность.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 08.08.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


1

Предисловие

В данной работе рассмотрен метод комплексных чисел в планиметрии, применение его критериев в задачах элементарного характера на темы - «Параллельность, коллинеарность, перпендикулярность», «Углы и площади», «Многоугольники», «Прямая и окружность».

Метод комплексных чисел в иностранной литературе используется достаточно широко. Однако в отечественной литературе этот метод не получил широкого распространения. Имеются отдельные фрагменты в книге З. А. Скопеца. Систематическое изложение этого метода дано в книге Я. П. Понарина «Алгебра комплексных чисел в геометрических задачах». Нами выбраны и решены на наш взгляд наиболее интересные задачи, выполняемые этим методом.

Метод комплексных чисел позволяет решать планиметрические задачи прямым вычислением по готовым формулам. Выбор этих формул с очевидностью диктуется условием задачи и её требованием. В этом состоит необычайная простота этого метода по сравнению с векторным и координатным методами, методом геометрических преобразований, конструктивно-синтетическим методом, требующими от решающего порой немалой сообразительности и длительных поисков, хотя при этом готовое решение может быть коротким.

§ 1 Параллельность, коллинеарность, перпендикулярность.

1.1. Коллинеарность векторов.

(1.2)

1.2. Коллинеарность трёх точек.

(1.3)

Это - критерий принадлежности точек А, В, С одной прямой.

(1.5)

определяет прямую, содержащую хорду АВ единичной окружности.

1.3. Перпендикулярность отрезков (векторов).

(1.7)

Уравнение касательной

(1.8)

(1.9)

З а д а ч а 1. Доказать, что точки пересечения прямых, содержащих стороны треугольника, с касательными к описанной окружности в противоположных им вершинах коллинеарны.

§ 2 Углы и площади

2.1. Угол между векторами.

(2.1)

(2.2)

2.2. Площадь треугольника

(2.3)

З а д а ч а 2. Основание D высоты CD треугольника ABC делит сторону AB в отношении 3:1. Угол ACD вдвое больше угла BCD. Вычислить углы треугольника ABC.

§ 3 Многоугольники

3.1. Подобные треугольники.

(3.1)

где - комплексное число, - коэффициент подобия.

(3.2)

где - комплексное число, - коэффициент подобия.

Если , то треугольники и равны. Тогда соотношение (3.1) - признак равенства одинаково ориентированных треугольников, а соотношение (3.2) - признак равенства противоположно ориентированных треугольников.

3.2. Критерий правильного треугольника.

Треугольник ориентирован положительно:

(3.4)

Треугольник ориентирован отрицательно:

(3.5)

3.3 Правильные многоугольники.

где k принимает значения . Все n значений имеют один и тот же модуль

Корням уравнения

соответствуют вершины .

З а д а ч а 3. Точки симметричны точке Р, лежащей в плоскости треугольника ABC, относительно, соответственно, прямых AB, BC, CA. Точки - середины отрезков Докажите, что треугольники и подобны и противоположно ориентированы (рис. 5).

З а д а ч а 4. На сторонах и выпуклого четырёхугольника вне его построены правильные треугольники и а на сторонах и построены правильные треугольники и лежащие с четырёхугольником в одной полуплоскости относительно прямых и соответственно. Докажите, что -параллелограмм (рис. 6).

З а д а ч а 5. Точка делит сторону правильного треугол и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.