На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


доклад Энергоснабжение

Информация:

Тип работы: доклад. Добавлен: 17.05.2012. Сдан: 2011. Страниц: 3. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Энергоснабжение
ЭНЕРГОСНАБЖЕНИЕ - обеспечение предприятия всеми  видами энергии и топлива. Электрическая сеть — совокупность электроустановок предназначенных для передачи и распределения электроэнергии от электростанции к потребителю. ГОСТ 24291-90 даёт следующее определение электрической сети[1]:
Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.
Классификация электрических сетей
Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.
    Назначение, область применения
      Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
      Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
      Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
      Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
    Масштабные признаки, размеры сети
      Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
      Региональные сети: сети масштаба региона (в России - уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
      Районные сети, распределительные сети. Имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
      Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
      Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и маленькими потоками мощности (десятки и сотни киловатт).
    Род тока
      Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
      Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т. н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
      Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.
Принципы  работы
Электрические сети осуществляют передачу, распределение  и преобразование электроэнергии в  соответствии с возможностями источников и требованиями потребителей.
Переменный  ток
Дополнительные  сведения: Переменный ток
Большинство крупных  источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.
Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется. 

Классы  напряжения
При передаче большой  электрической мощности при низком напряжении возникают большие омические  потери из-за больших значений протекающего тока. Формула ?S = I?R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле S = IU для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.
В связи с  этим сети разбивают на участки с  разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения: от 750 кВ и выше (1150 кВ, 1500 кВ) - Ультравысокий, 750 кВ, 500 кВ, 330 кВ - сверхвысокий, 220 кВ, 110 кВ - ВН, высокое напряжение, 35 кВ - СН-1, среднее первое напряжение, 20 кВ, 10 кВ, 6 кВ, 1 кВ - СН-2, среднее второе напряжение, 0,4 кВ, 220 В, 110 В и ниже - НН, низкое напряжение.
Преобразование  напряжения

Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно  пропорциональны квадрату напряжения, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя  его понижают при помощи трансформаторов.
Структура сети
Электрическая сеть может иметь очень сложную  структуру, обусловленную территориальным  расположением потребителей, источников, требованиями надёжности и другими  соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы (англ. Commutator (electric)) различных типов.
Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.
Структура сети электроснабжения может динамически  изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных  участков сети, для временного отключения участков при ремонте. Структура  сети также может быть изменена для  оптимизации электрического режима сети.
Основные  компоненты сети
Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей . Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).
Вводно-распределительное  устройство (также УВР, от Устройство Вводно-Распределительное) — совокупность электротехнических конструкций и аппаратов, предназначенных для приема, распределения, резервирования и учета электрической энергии, устанавливаемая в жилых и общественных зданиях, а также промышленных производственных помещениях (цехах).
Выравнивающий токток, возникающий вследствие разницы потенциалов на двух объектах, заземлённых на разных шинах либо даже на одной шине, если она имеет достаточно большую длину.
На практике выравнивающий ток часто наблюдается  при соединении компьютеров в  сеть, а также при присоединении  компьютеров к контрольно-измерительным  приборам и к автоматически управляемым  устройствам. Чаще всего он идёт по экранирующей оплётке соединительного  кабеля. Выравнивающий ток является переменным с высокочастотными составляющими.
Также подключение  однофазной нагрузки в трёхфазную сеть вызывает перекос фаз и появление выравнивающего тока в нейтральном проводнике.
Вред от выравнивающего тока:
    Искажается передаваемый сигнал.
    Может выйти из строя какой-либо чувствительный узел, например, сетевой адаптер.
    При сильных токах наблюдается нагрев отдельных участков, что может привести к пожару.
Кажущаяся польза от выравнивающего тока:
    Если один из связанных приборов (компьютеров) заземлён качественно, то уменьшается опасность для человека на других связанных с ним плохо заземлённых приборах (компьютерах).
Меры борьбы с выравнивающим током:
    зануление всех связанных приборов (компьютеров). Переход на систему TN-S или TN-C-S, чтобы в нулевом защитном проводе не протекало никаких токов в нормальном режиме.
    гальваническая развязка компьютеров и других приборов от сети, или развязка по сигнальным цепям.
    Главный распределительный щит (ГРЩ) распределительный щит, через который осуществляется приём и распределение электроэнергии по зданию или какой-то его части. Щиты ГРЩ предназначены для приёма и распределения электроэнергии (возможен также учёт) в сетях переменного тока с разделенной землёй и нейтралью (возможно подключение к сетям с глухозаземленной нейтралью (тип заземления TN-C, TN-S, TN-C-S) напряжением до 380В, частотой 50 Гц, защиты линий при перегрузках, утечек и коротких замыканиях. В качестве ГРЩ может служить вводно-распределительное устройство или щит низшего напряжения подстанции. Главный распределительный щит содержит в себе противоаварийную автоматику (например, автоматические выключатели или устройства УЗО), средства учёта электроэнергии (счётчики).
     
    Различают вводные, секционные и линейные шкафы ГРЩ. Фактически, главный распределительный щит может быть реализован множеством устройств: распределительными панелями ЩО-70, шкафами ВРУ и ШР, распределительными пунктами ПР и другим электрощитовым оборудованием.

 
Двухфазные  электрические сети применялись в начале 20-го века в электрических распределительных сетях переменного тока. В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на 90 градусов. Обычно в контурах использовались 4 линии — по две на каждую фазу. Реже применялся один общий провод, имевший больший диаметр, чем два других провода. Некоторые из наиболее ранних двухфазных генераторов имели по два полноценных ротора с обмотками, физически повёрнутыми на 90 градусов.
Разъединитель - контактный коммутационный аппарат, в разомкнутом положении соответствующий требованиям к функции разъединения. 
Разъединение (функция
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.