Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Системы подвижной спутниковой связи на основе низкоорбитальных ИСЗ

Информация:

Тип работы: курсовая работа. Добавлен: 18.05.2012. Сдан: 2011. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Системы подвижной спутниковой  связи на основе низкоорбитальных ИСЗ
Оглавление .....................................................................................................................стр.
Введение.......................................................................................................3
1 Основные требования, предъявляемые к системам слежения  за подвижными объектами.....................................................................5
2 Описание существующих  и планируемых отечественных и зарубежных систем, представляющих возможность слежения за местоположением подвижных объектов.........................6
2.1 Международная  система спутниковой связи “ИНМАРСАТ”..........6
2.2 Международная  спутниковая система “КОСПАС-САРСАТ”.........8
2.3 Спутниковая  система “КУРС”............................................................11
2.4 спутниковая  система “ГОНЕЦ”..........................................................13
3 Обоснование  выбора системы................................................................14
4 Описание системы  “ОРБКОММ” и ее технические  характеристики..17
4.1 Назначение  системы.............................................................................17
4.2 Принцип работы...................................................................................17
4.3 Форматы передаваемых  сообщений....................................................18
4.4 Взаимодействие  с другими сетями.......................................................19
4.5 Зоны обслуживания  и время доставки сообщений.............................19
Заключение...................................................................................................21
Литература...................................................................................................22 

  

Введение
     В настоящее время у многих ведомств и организаций возникает необходимость  оперативного слежения за местоположением  и состоянием подвижных объектов, а также передачи на них оперативной  информации.
     Практически все заинтересованные диспетчерские службы в настоящее время имеют в своем распоряжении те или иные технические средства, позволяющие осуществлять контроль/слежение за передвижением своих объектов. Однако существующие средства не являются совершенными, обладают малой степенью автоматизации и имеют малую достоверность.
     В последние годы настоятельно ставится задача о внедрении новых надежных технических средств, которые позволили  бы осуществлять автоматизированный сбор диспетчерской информации с подвижных  объектов, а также передавать информацию на объекты. Технически эта задача может быть выполнена целым рядом средств, как традиционных, так и спутниковых. На практике, однако, ни одна из возможных систем так и не была реализована на территории России.
     Создание  такой системы позволит обеспечить автоматизированный сбор информации о дислокации подвижных объектов, обслуживаемых в рамках данной системы вне зависимости от их местоположения на Земном шаре, т.е. в глобальном режиме. При этом средства системы будут автоматически вычислять географические координаты местоположения объектов и направлять их в соответствующие диспетчерские пункты пользователей. Информация может быть также запрошена с объекта по инициативе диспетчера из диспетчерского пункта и имеется возможность передать на объект необходимую информацию.
     Средства  системы позволяют не только решать коммерческие цели управления, но и  обеспечат повышение безопасности движения объектов и будут способствовать охране человеческой жизни. Данные о  дислокации аварийных объектов могут  быть переданы в соответствующие поисково-спасательные службы.
     Изучения, проведенные в России показали, что  имеются следующие основные категории  потенциальных пользователей, заинтересованные в получении оперативной информации с подвижных и стационарных объектов:
1. Администрации, эксплуатирующие морские и речные суда.
2. Организации,  эксплуатирующие подвижной железнодорожный  состав и специальные средства.
3. Организации,  эксплуатирующие подвижные автомобильные  объекты.
4. Научные организации,  проводящие с помощью подвижных технических средств изучение мирового океана и воздушного пространства.
5. Организации,  эксплуатирующие магистральные  трубопроводы и иные удаленные  объекты.
6. Предприятия  топливно-энергетического комплекса.
7. Администрации,  осуществляющие контроль за состоянием окружающей Среды.
8. Сельскохозяйственные  предприятия.
9. Коммерческие  структуры.
     Анализ  требований потенциальных пользователей  к системам сбора оперативной  информации позволил выявить следующее:
1. Необходимость  автоматического определения географического местоположения объекта, не требующего вмешательства оператора в работу оконечного устройства. При этом требования к точности определения местоположения варьируются от нескольких метров до десятков километров. Некоторые категории объектов движутся по строго определенным маршрутам (поезда, автомобили), в то время, как другие имеют большую свободу перемещений (суда, научные буи и т.д.).
2. Требования  к оперативности доставки информации  от оконечного устройства до  пункта сбора данных пользователя изменяются от нескольких минут до нескольких часов.
3. Количество  определений - от нескольких раз  в месяц до нескольких раз  в час.
4. Возможность  передачи дополнительной информации  с подвижного объекта и на  объект. При этом выявлен достаточно  широкий диапазон информации, подлежащей передачи.
5. Наличие простых  и недорогостоящих оконечных  устройств пользователей, которые  при необходимости могли бы  работать от автономных источников  питания.
     В использовании системы слежения за местоположением подвижных объектов проявили заинтересованность ряд ведомств и организаций (МВД, МПС и др.). 

1. Основные требования  к системе слежения за подвижными  объектами.
     Система должна обеспечивать возможность слежения за передвижением ценных грузов, легкового  автотранспорта и других подвижных объектов в реальном масштабе времени с точностью определения местоположения до 50-400 метров, а также получения от объектов аварийной информации.
     В состав системы должны входить главный  и региональные диспетчерские центры, в которые информация от объектов должна поступать одновременно.
     Должна  быть предусмотрена возможность  запросов о местоположении и состоянии  объектов из диспетчерских центров, а также передача на них информации.
     Тип передаваемой информации - цифровой.
     Терминалы, устанавливаемые на подвижные объекты, должны быть устойчивы к вибрационным воздействиям, иметь малые габариты, вес (не более 1 - 1,5 кг.) и энергопотребление. Электропитание должно осуществляться от автономного источника.
     Необходимо  предусмотреть возможность автоматического срабатывания терминалов в аварийных ситуациях.
     Терминалы должны обеспечивать бесперебойную  работу в диапазоне температур от -50 до +50 °С при влажности воздуха  при 30 °С - 99%.
     Антенны терминалов должны иметь малые габариты и обеспечивать бесперебойную связь при скорости ветра до 30 м/сек.  

2. Описание существующих  и планируемых отечественных  и зарубежных систем, предоставляющих  возможность слежения за местоположением  подвижных объектов
2.1 Международная  система спутниковой связи “Инмарсат”
В 1982 году началась эксплуатация Международной системы спутниковой связи (ИНМАРСАТ). Для эксплуатации и развития этой системы была создана новая международная организация со штаб квартирой в Лондоне. Сейчас эта организация объединяет 75 государств.
     Система “Инмарсат” включает в себя следующие основные комплексы:
- космический  сегмент;
- сеть Земных  станций;
- Координационные  центры системы;
- парк станций,  устанавливаемых на подвижных  объектах.
     Работа  системы осуществляется в диапазонах частот, выделенных Всемирной административной радиоконференцией для подвижных служб. Для подвижных объектов используется диапазон 1,5/1,6 ГГц., а для фидерных линий земных станций - 4/6 ГГц. Система “Инмарсат” обслуживает все существующие подвижные службы, включая морскую, авиационную и сухопутную и позволяет осуществлять двустороннюю связь в телефонном и телеграфном режимах. При этом, с помощью системы сигнализации, вхождение в связь осуществляется в полностью автоматизированном режиме. Любая станция, установленная на подвижном объекте, может в автоматическом режиме осуществлять выход на любого абонента телексной или телефонной сетей, независимо от страны и континента. Качество каналов связи удовлетворяет соответствующим рекомендациям МСЭ.
     Космический сегмент, системы на данном этапе, включает в себя 8 спутников - ретрансляторов (4 основных и 4 резервных), расположенных на геостационарной орбите. Сеть “Инмарсат”, организованная в 4 океанских регионах, покрывает практически всю поверхность Земного шара, за исключением приполярных районов.
     Радиокомплекс КА состоит ретрансляторов, осуществляющих прием, усиление и перенос сигналов (без какой-либо обработки) в следующих  диапазонах:
1,6 ГГц - 4 ГГц  (линия “подвижное средство-КА-Земля”);
6 ГГц - 1,5 ГГц  (линия “Земля-КА-подвижный объект”);
     Диаграмма направленности антенных систем, как  правило, оптимизированна для облучения  поверхности Земного шара.
     Пропускная  способность в каждом океанском  регионе определяется параметрами  конкретного КА, выполняющего роль эксплуатационного (от 75 до 200 эквивалентных телефонных каналов).
     Для работы в рамках системы “Инмарсат” подвижные объекты оснащаются оконечным  терминальным оборудованием. Такое  оборудование должно удовлетворять  определенным технико-эксплуатационным требованиям “Инмарсат”а, известным  как Стандарты.
     Станция Стандарта-А практически является терминальным устройством международной  телефонной и телексной связи. Протоколы  работы обеспечивают автоматическое соединение с любым абонентом этих сетей. Станции Стандарта-А имеют добротность -4 дБ/К, ЭИИМ в пределах 36 дБВт. Работа станции обеспечивается с помощью направленной и стабилизированной параболической антенны диаметром 80-120 см. Станция управляется микропроцессорами и  являются полностью автоматизированной и обеспечивает связь в телефонном и телеграфном режимах.
     Одобрение станций Стандарта-А “Инмарсат”ом уже прекращено вследствие неэффективности  использованием этим оборудованием  выделенного частотного диапазона  и мощности ИСЗ.
     В настоящее время в системе  “Инмарсат” внедряются новые классы аппаратуры, получившие следующие названия:
     Станции Стандарта-С представляют собой  малогабаритные станции с ненаправленной антенной с добротностью -23 дБ/К, ЭИИМ - 12 дБВт. Антенные системы имеют  либо ненаправленную либо слабонаправленную  диаграммы направленности и обладают небольшими физическими габаритами. Передача информационных и сигнальных сообщений осуществляется в пакетной форме.
     Спутниковая приемо-передающая станция Стандарта-С, оборудованная встроенным приемником GPS (Global Positioning System) для определения местоположения подвижного объекта, позволяет автоматически передавать навигационные данные объекта в диспетчерские центры. Погрешность в определении местоположения составляет десятки метров. Связь осуществляется при любых погодных условиях и атмосферных явлениях по запросу с диспетчерского центра, либо автоматически, в заданные диспетчером интервалы времени.
     В настоящее время в данной системе  эксплуатируются комплексы, базирующиеся на использовании типового персонального  компьютера. Данный комплекс позволяет отображать движение транспортных средств по территории России на экране монитора с помощью электронных карт и осуществлять с объектами двустороннюю связь в режиме низкоскоростной передачи данных (600 бит/сек). На электронные карты пользователь может наносить необходимую ему информацию самостоятельно как в виде пометок на карте, так и при помощи прикладных баз данных.
     Транспортное  средство (например грузовик с особо  опасным или дорогим грузом) оборудуется  терминалом “Инмарсат” Стандарта-А, совмещенным с GPS. Диспетчер может получать всю необходимую ему информацию по конкретному транспортному средству (местоположение, аварийная ситуация, при необходимости технологические данные перевозимых грузов) по собственному запросу, или автоматически, по заданному интервалу времени. Он также имеет возможность передавать или принимать текстовые сообщения. Все переданные/принятые сообщения автоматически архивируются в электронных журналах. Помимо передачи в диспетчерский пункт технологической информации об объекте, система может быть интегрирована с датчиками аварийных ситуаций и несанкционированного доступа к оборудованию, либо к самой системе. Аварийные сигналы автоматически поступят на пульт диспетчера и он имеет возможность оперативно реагировать, связавшись с соответствующими технологическими службами или службами безопасности.
     Стандарт-С  использует систему идентификации, где каждому принятому в эксплуатацию терминалу присваивается его  уникальный номер и используется кодирование сообщений, что позволяет  обеспечить высокий уровень безопасности передачи. Также имеется возможность организовывать передачу информации с одного терминала на группу терминалов или запрограммировать терминал для получения специальных сообщений.
     Электропитание  терминалов осуществляется от сети переменного тока, или с использованием аккумуляторных батарей. 

Особенностями системы “Инмарсат” Стандарт-С  являются сравнительная низкая стоимость  передаваемых сообщений и малые  размеры поддерживаемых ею терминалов.
     “Инмарсат”  Стандарт-В представляет собой станцию спутниковой связи, обеспечивающую связь в режимах телефонии, телеграфии, факсимиле, передачу данных. При этом используется цифровая модуляция со скоростью 24 кбит/сек. Размеры антенны те же, что и для станций Стандарта-А. Планируется, что в ближайшие время станции данного типа полностью заменят парк станций Стандарта-А ввиду более низких тарифов на каналы связи.
     Связь подвижных объектов в системе  “Инмарсат” осуществляется через  земные станции. В настоящее время  в системе “Инмарсат” функционируют 38 земных станций, расположенные в разных странах мира. Земная станция обеспечивает обмен информацией между наземными и подвижными объектами и стыковку с наземными линиями связи. Земные станции, как минимум, состыкованы с международными телефонной и телексной сетями связи. Также они могут быть состыкованы с другими международными и национальными сетями связи. Каждая земная станция имеет закрепленную за ней несущую, которая уплотняется 22 телеграфными каналами. Телефонные каналы не закреплены за конкретными станциями, а находятся в “общем пользовании”. Для более рационального использования телефонных каналов, в каждом океанском регионе имеется координационная станция, которая в автоматизированном режиме осуществляет распределение телефонных каналов по запросам земных станций. Через эту станцию также происходит ретрансляция определенных категорий сигнальных сообщений. 

2.2 Международная  спутниковая система КОСПАС-САРСАТ
     Международная спутниковая система “КОСПАС-САРСАТ”, предназначенная для обнаружения  и определения местоположения судов и самолетов, потерпевших аварию, разработана и создана совместно СССР, США, Канадой и Францией. 
     Система “КОСПАС-САРСАТ” включает в себя следующие основные комплексы:
космический сегмент;
- сеть Станций  приема и обработки информации (СПОИ);
- сеть Координационных  центров системы (КЦС);
- парк аварийных  радиомаяков (радиобуев). 

 Для работы  аварийных радиомаяков используются  следующие фиксированные частоты  и диапазоны:
- 121,5 МГц - частота  , выделенная МСЭ в качестве  аварийной для авиационной подвижной службы;
-  диапазон 406,0 - 406,1 МГц, выделенный МСЭ исключительно  для аварийных радиомаяков, работающих  в спутниковых системах.
     Географическое  положение излучающих аварийных  радиомаяков определяется системой автоматически с использованием эффекта Допплера с точностью не хуже 5 км. для радиобуев, работающих в диапазоне 406 МГц, и 20 км для радиобуев, работающих на частоте 121,5 МГц.
       Допплеровское определение местоположения  дает два решения для каждого  радиомаяка: истинное и зеркальное относительно наземной проекции трассы спутника. Эта неоднозначность решается путем расчетов, принимая во внимание эффект вращения Земли. При достаточно высокой стабильности несущей частоты радиомаяка, что имеет место с радиомаяками 406 МГц , которые спроектированы специально с этой целью, истинное решение определяется за один проход ИСЗ. Для радиомаяков 121 МГц эта неоднозначность разрешается в результате второго прохода.
     В соответствии с Межправительственным соглашением, космический сегмент  системы “КОСПАС-САРСАТ” состоит как минимум из 4 КА, расположенных на полярной круговой орбите. Два спутника “Надежда”, изготавливаемых и поставляемых Россией, размещены на приполярной орбите с высотой 1000 км.; КА оснащены радиокомплексом, осуществляющим прием на частотах 121,5 МГц и 406 МГц. США обеспечивает два метеорологических спутника НОАА, размещенных на приполярных орбитах с высотой 850 км. Эти КА оснащены радиооборудованием, обеспечивающим прием на частотах 121,5 МГц и 406 МГц, изготавливаемым и поставляемым Канадой и Францией. В настоящее время в космическом комплексе системы эксплуатируется 6 КА (3 КА типа КОСПАС и 3 КА типа САРСАТ). Космический аппарат КОСПАС-САРСАТ совершает оборот вокруг Земного шара примерно за 100 минут, при этом с него обозревается участок Земли шириной свыше 4000 км. В зависимости от угла подъема и геометрии конкретного прохода КА время взаимной видимости КА-СПОИ составляет до 15 минут. Бортовая аппаратура КА обеспечивает работу в следующих режимах: в режиме реального времени и в глобальном режиме. На обоих частотах 121,5 МГц и 406 МГц система функционирует в режиме реального времени, в то время как на частоте 406 МГц она действует также и в глобальном режиме, обеспечивая таким образом обслуживание всей поверхности Земного шара.
     Глобальное обслуживание обеспечивается посредством записи в бортовом запоминающем устройстве КА информации, получаемой в результате бортовой обработки сигналов радиомаяков. Информация, накопленная в памяти КА, постоянно излучается передатчиком. Прием на СПОИ осуществляется при появлении спутника в ее зоне видимости. Местоположение каждого радиомаяка таким образом может быть определено всеми СПОИ, чем обеспечивается многократная обработка сигналов наземном сегментом.
     Бортовой  ретранслятор КА сигналы, принятые на частоте 121,5 МГц, передает непосредственно на Землю. При приеме посылок радиомаяков 406 МГц бортовой аппаратурой измеряется Доплеровский сдвиг и из сигнала извлекаются цифровые данные. Эта информация привязывается ко времени, производится ее преобразование в цифровую форму и подается на передатчик. Эта информация также заносится в бортовое запоминающее устройство КА для последующей ее передачи и обработки на Земле в глобальном режиме.
     Пропускная  способность системы определяется количеством радиомаяков, находящихся в зоне видимости КА, которые могут быть одновременно обработаны системой.
     Аварийные радиомаяки используются в основном в интересах следующих подвижных  служб:
- авиационная  подвижная служба; радиомаяки устанавливаются  на самолетах, вертолетах и других воздушных суднах гражданской и военной авиации;
- морская подвижная  служба; радиомаяки устанавливаются  на морских, речных грузо-пассажирских  и промысловых судах, яхтах  и других плавучих средствах;
- сухопутная  подвижная служба; радиомаяки используются на сухопутных транспортных средствах, при проведении геологических, научных, спортивных и других экспедиций.
     Наблюдается также тенденция к использованию  радиомаяков на некоторых фиксированных  объектах с целью подачи предупреждающих  сигналов при критических условиях (например, при возникновении экологической либо другой опасности). 

2.3 Спутниковая  система “Курс”
     В состав технических средств спутниковой  системы контроля за движением транспортных средств “Надежда-М” (в дальнейшем используется условное наименование “КУРС”) должны входить космический комплекс, наземный комплекс и парк радиомаяков, устанавливаемых на обслуживаемых подвижных объектах.
     Космический комплекс системы должен включать в  себя как минимум два ИСЗ, расположенных  на низких полярных орбитах с высотой 1000 км. На такой орбите ИСЗ совершает полный оборот вокруг Земного шара за 104 минуты. Космические аппараты будут иметь на борту комплекс радиотехнических средств, позволяющих осуществлять прием в диапазоне частот 405 МГц. Бортовая аппаратура КА будет осуществлять первичную обработку принятых сигналов и их привязку по времени, а также передавать обработанную информацию по линии ИСЗ-Земля.
     Прием информации, передаваемой с КА будет  осуществляться специальными Станциями  приема и обработки информации ( СПОИ ), расположенными на территории России. Используя эффект Допплера, оборудование станции автоматически вычисляет географические координаты источника излучения сигнала и определяет его идентификатор. Полученная на выходе информация может быть передана непосредственно в пункт сбора информации пользователя, либо направляться в Координационный центр системы для сортировки и доставки в диспетчерский пункт пользователя. Для приема информации с ИСЗ достаточно иметь в составе системы одну наземную станцию, однако для оптимальной обработки сигналов в таком случае станция должна располагаться как можно ближе к географическому Северному полюсу.
     Планируется, что наземный комплекс системы “КУРС” будет включать в себя три СПОИ. При необходимости сеть станций  системы “КУРС” в дальнейшем может быть расширена.
     Централизованный  сбор информации со СПОИ о дислокации всех объектов и ее распределение  потребителям, для которых она  предназначена (поисково-спасательные центры, пароходства), будет осуществляться Координационным центром системы (КЦС). Предусматривается также возможность получения пользователем информации и на региональной основе — т.е. непосредственно от ближайшей СПОИ, а не из центра системы. 
     Для работы в рамках системы контроля за движением транспортных средств объекты пользователей должны быть оснащены радиомаяками, представляющие собой радиопередатчики, излучающие цифровые посылки в диапазоне 405 МГц с периодичностью порядка одной минуты. Посылки содержат цифровой идентификатор радиомаяка, с помощью которого осуществляется опознавание подвижного объекта. Планируется производство нескольких модификаций радиомаяков, в том числе и таких, которые позволят также передавать и дополнительную формализованную информацию ( от 6 до 10 байт ); дополнительная информация может вводиться в передающее устройство вручную либо автоматически.
     Аппаратура  КА и СПОИ системы “КУРС” будет  автоматически вычислять географические координаты местоположения объектов, оснащенных радиомаяками. При этом географические координаты объекта будут определяться с вероятностью 0,99 со среднеквадратичной ошибкой 3,6 км для неподвижных объектов и 20 км для объектов, движущихся со скоростью не более 30 км/час. При наличии двух ИСЗ на орбите, система “КУРС” позволит не реже двух раз в сутки получать информацию о географическом местоположении объекта вне зависимости от его расположения на поверхности Земного шара. Фактическая частота получения информации в основном зависит от географической широты места объекта и может доходить до 10-15 раз в сутки.
     Вследствие  наличия на борту КА запоминающего  устройства системы позволят принимать  и обрабатывать сигналы, поступающие  с любой точки Земного шара. Это свойство особенно важно для  тех диспетчерских служб и  подвижных объектов, которые не имеют  строго выраженных географических ограничений в своем передвижении, т.е. судов мирового торгового флота, международного автотранспорта и т.д.
     Создание  спутниковой системы контроля за движением транспортных средств  планируется на технической базе находящейся в штатной эксплуатации российской части международной спутниковой системы КОСПАС-САРСАТ (“Надежда”), предназначенной для определения местоположения судов и самолетов, потерпевших аварию, в которой используются многоцелевые ИСЗ с аппаратурой КОСПАС-САРСАТ на борту. В состав космического комплекса российской части системы КОСПАС-САРСАТ входят как минимум два ИСЗ, расположенных на низких полярных орбитах с высотой 1000 км.
     Наземный  комплекс системы КОСПАС-САРСАТ включает в себя СПОИ и Международный координационно-вычислительный центр (МКВЦ). Станции связаны с центром арендованными телефонными каналами связи.
     Штатная орбитальная группировка КОСПАС-САРСАТ/КУРС будет включать в себя четыре ИСЗ  с унифицированной бортовой аппаратурой, которая может функционировать  как в рамках системы КОСПАС-САРСАТ, так и в рамках системы “КУРС”. Переключение режима работы бортовой аппаратуры будет осуществляться по командам с Земли. При этом два ИСЗ будут постоянно работать  в режиме КОСПАС-САРСАТ, а два других - в рамках системы “КУРС”. Разрабатываемое в настоящее время оборудование второго поколения СПОИ будет также унифицированным, т.е. будет способно принимать и обрабатывать с ИСЗ как в режиме КОСПАС-САРСАТ, так и в режиме “КУРС”, т.е. сбор информации со СПОИ и ее распределение потребителям будет осуществляться существующим МКВЦ системы КОСПАС-САРСАТ.
     Такое построение космического и наземного  сегментов системы “КУРС” позволит в максимальной степени использовать существующие техническое средства и каналы связи и минимизировать эксплуатационные расходы. 
 

2.4 Спутниковая  система “ГОНЕЦ”
      Предполагается, что система “ГОНЕЦ” будет  включать в себя космический сегмент, состоящий из 36 КА и земной сегмент, включающий в себя абонентские терминалы  трех типов. Связь между абонентами может производиться без использования наземных сетей связи.
     Первый  тип терминалов - носимые терминалы  весом 3-5 кг будут обеспечивать передачу информации со скоростью 4,8 кбит/сек. Терминал будет снабжен клавиатурой с  полным набором русских, латинских  и служебных символов. Кроме того, терминал будет обеспечивать сопряжение с персональным компьютером.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.