На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Черные дыры Вселенной

Информация:

Тип работы: реферат. Добавлен: 18.05.2012. Сдан: 2011. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Оглавление: 
I Введение.
II Основная часть.
Черная дыра – как последняя стадия эволюции звезд.
Обнаружение черных дыр.
Математическое описание.
Тесные двойные системы.
Гравитационные волны.
Разрушение звезд.
Черные дыры нагревают межгалактическое пространство.
Черная дыра может быть и “белой”.
Дыра во времени.
Небесная механика черных дыр.
Суперрадиация.
III Заключительная часть.
Заключение.
Использованные источники.
 
 
 
 
 
 
 
 
 

Введение.
Одними  из самых загадочных объектов во вселенной  являются черные дыры. Я не случайно выбрал эту тему. Черные дыры являются одновременно очень простыми и очень сложными в понимании. Черная дыра является порождением тяготения. Их тяжело изучать, т.к. они в данный момент времени недосягаемы для нас, но по расчетам математиков о них можно судить. Даже изучение этих объектов на расстоянии давалось с трудом (пока на орбиту не взошли рентгеновские обсерватории). Ведь свет не может покинуть горизонт событий черной дыры, поэтому об их существовании можно было судить только по мощному воздействию на окружающую материю. Поэтому в видимом спектре излучения такие объекты обнаружить нельзя. Это были сложности черных дыр. К простым чертам этих объектов можно отнести то что они не имеют химического состава и описываются только математическими законами гравитации Эйнштейна. Удивительно, но такие экзотические объекты устроены даже проще чем звезды. Поверхности, в нашем понимании, у нее нету. Характеризуются эти объекты в первую очередь массой, во вторую – моментом количества движения, в третью – электрическим зарядом. Сам термин “черная дыра” был введен в науку Джоном Уилером в 1968г для обозначения сколлапсировавшейся звезды. Еще Пьер Симон Лаплас в свое время уже догадывался о возможности существования таких объектов. Он писал: “Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми”. Основываясь только на законе тяготения Ньютона, Лаплас приходит к открытию того, что тела с огромной массой и повышенной плотностью не позволят излучению покидать их поверхность. Это было предвидением черных дыр. Однако реальные характеристики черных дыр отличны от лапласовских, так как они определяются теорией относительности Эйнштейна, уточняющей теорию Ньютона.

 

Основная  часть.
Черная  дыра – как последняя стадия эволюции звезд.
После выгорания  термоядерного вещества в звезде, масса которой сравнима с массой солнца, то свойства газа кардинально  меняются. Подобный газ называется вырожденным, а звезды, которые состоят  из него – вырожденными звездами (в  середине 20х годов итальянский физик Энрико Ферми разработал теорию, которая описывает свойства газов с плотностями, характерными для белых карликов. Давление такого газа не зависит от температуры. Оно остается высоким, даже если тело охладить до абсолютного нуля. Газ, обладающий такими свойствами получил название вырожденного. Эта теория хорошо объясняла наблюдаемые свойства белых карликов, поэтому их стали называть вырожденными звездами). После образования вырожденного ядра, горение продолжается в источнике вокруг него, имеющем форму шарового слоя. При этом звезда переходит в состояние, называемое красным гигантом. Оболочка такого гиганта достигает колоссальных размеров – в сотни радиусов солнца и за время 10-100 тысяч лет рассеивается в пространство. Сброшенная оболочка видна как планетарная туманность. Оставшееся горячее ядро постепенно остывает, звезда превращается в белый карлик. Средняя плотность вещества белого карлика – 109 кг/м3. Ядерные реакции внутри белого карлика не идут, а свечение происходит за счет медленного остывания. Основной запас энергии белого карлика – колебательные движения ионов, которые при температуре нижу 15000K образуют кристаллическую решетку. У белых карликов есть предел массы(граница Чандрасекара, равная 1,4 массы Солнца), при превышении которого звезда превращается в нейтронную звезду (если она именно сколлапсирует, а не сбросит оболочку). В ходе коллапса резко повышается плотность вещества, протоны и электроны объединяются за счет мощного давления, и образуются нейтроны. Освободившуюся энергию в основном уносят нейтрино. Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Скорость движения оболочки звезды к ее центру увеличивается, при достаточной массе, приближаясь к скорости света. Коллапс обычно останавливается при плотности ~ 1017 кг/м3, либо выделившаяся энергия разрушает дыру, то есть коллапс перерастает во взрыв. Большинство нейтронных звезд образуются при коллапсе звезд с массой более 10 M?. Так как размеры звезды сильно сокращаются, то по закону сохранения вращательного импульса, резко возрастает частота вращения вокруг оси. Если масса нейтронной звезды больше 3 M? (предел Оппенгеймера-Волкова), то звезда коллапсирует еще дальше – образуется черная дыра (маломассивная). Звезды с массой меньше 8 M? оканчивают жизнь как белые карлики, между 8 и 45 M? - как нейтронные звезды; черные дыры образуются только из звезд массивнее 45 M?. В типичной галактике типа нашей должно быть порядка 107 – 108 черных дыр звездных масс.
Время гравитационного  коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды – только 1/20 000 секунды.
Обнаружение черных дыр.
Как известно, черные дыры нельзя обнаружить при помощи непосредственных наблюдений. Их можно обнаружить по мощному воздействию на окружающую материю и по рентгеновскому излучению, испускаемому веществом при аккреции. Не редко встречаются пары – массивная звезда и черная дыра по соседству. Первый кандидат на такую модель – пара обнаруженная в начале 70х годов. Здесь вращаются горячая голубая звезда, и, по всей вероятности, черная дыра, массой в 16 M?. Другая пара(v404) имеет невидимую массу в 16 M?. Еще одна подозреваемая пара – ренгеновский источник LMCX9 в 9 M?, находится в Большом Магеллановом облаке. Все эти случаи хорошо объединяются в рассуждения Джона Мишела о “темных звездах”:”Если звезда вращается вокруг невидимого чего-то, то мы должны быть в состоянии из движения этого вращающегося тела с известной вероятностью сделать вывод о существовании этого центрального тела”. Два итальянских астронома, Луиджи Стелла и Марио Виертри, на основе данных, полученных со спутника RXTE, открыли искривление пространства вокруг нейтронной звезды, правда очень слабое. Уже создается спутник “Gravity Probe B”, который специально приспособлен для исследования теории относительности. Измерения параметров движения в центральной области нашей галактики вели1992 по 1998 год сотрудники института внеземной физики имени Макса Планка в Гаршинге(в Германии) под руководством А. Эскарта. Они определяли скорость перемещения звезд с помощью специального спектрометра. Оказалось, что с наибольшей скоростью движутся те звезды, которые расположены поблизости от объекта Стрелец А, который и раньше относили к семейству черных дыр. У звезд, удаленных от него всего лишь на 5 световых суток, скорость обращения вокруг центра превышает 1000 км/с. Вычисления показали, что что подобное движение может наблюдаться лишь в том случае, если в центре галактики находится объект, масса которого составляет 2,6 млн. масс солнца, а плотность такая, как если бы 2 триллиона солнц “втиснуть” в один кубический световой год. Такими свойствами может обладать лишь черная дыра, существующая порядка миллиона лет. О сходных результатах сообщила на конференции Американского астрономического общества А.М.Гез. Вместе со соими коллегами она вела наблюдения в том же инфракрасном диапазоне частот(2мкм), что и Эскарт, но на более мощном 10-метровом телескопе имени Кека на горе Мауна-Кеа на Гавайских островах. Они установили, что звезды, расположенные к центру галактики вдвое ближе, чем наблюдавшиеся немецкими астрономами, движуться со скоростью 3000 км/с. По мнению Гез, такую скорость может вызвать только черная дыра с массой 2,7 миллионов солнечных. При таких огромных величинах выводы обеих групп можно считать почти идентичными. Итак, в центре нашей галактики, по всей видимости, также находится черная дыра. Массивные черные дыры в нашей и соседних галактиках должны быть уменьшенными версиями тех сильно нестационарных явлений, что наблюдаются в активных галактических ядрах. Но последние слишком далеки, чтобы можно было проводить спектроскопическое исследование их динамики. Однако, оценки их светимости и теоретические ограничения на эффективность энерговыделения в сильных гравитационных полях показывают, что центральные темные массы там заключены в пределах 107-109 M?. Переменность излучения на малых временах также свидетельствует о малых размах излучающих областей; многие активные ядра сильнопеременны на временных шкалах порядка часа, что ограничивает область излучения масштабом светового часа. А такие большие массы в таких малых объемах не могут быть скоплениями звезд, потому аккрецирующие массивные черные дыры остаются единственным приемлемым объяснением. Несколько лет назад группа американских и японских астрономов направила свой телескоп на созвездие гончих псов, на находящуюся там спиральную туманность M106. Эта галактика удалена от нас на 20 млн. световых лет, но ее можно увидеть даже с любительского телескопа. Долгое время многие считали, что она такая же, как и другие галактики. При внимательном изучении оказалось, что у этой туманности есть одна особенность – в ее центральной части существует природный квантовый генератор – мазер. Это газовые облака, в которых молекулы газа благодаря, излучают радиоволны. Мазер позволяет точно определить свое местоположение и скорость облака, а в итоге и других небесных тел. Японский астроном Маното Мионис и его коллеги во время наблюдения туманности М106 обнаружили странное поведение ее мазера. Оказалось, что облака вращаются вокруг какого-то центра, удаленного от них на 0,5 светового года. Особенно заинтересовала скорость этого вращения – ближние слои (к черной дыре) облаков двигались со скоростью ~1110 км/с. Это говорит о том, что в центре сосредоточена огромная масса. По расчетам она оказалась равной 36 миллионам солнечных! Астрономы отбросили предположение, что такая масса вызвана скоплением звезд, достаточно тесно расположенных друг к другу, т.к. из-за своего движения они слиплись бы. Осталось наиболее верное предположение – такая масса вызвана наличием черной дыры. Американским ученым удалось зафиксировать рентгеновское излучение от супермассивных черных дыр, которые до недавнего времени считались тихими. Эти дыры существуют в центрах самых старых и самых массивных галактик и имеют массу, сравнимую с массой миллиардов солнц, сжатую до размеров солнечной системы. В то время, когда наибольший процент черных дыр излучают рентгеновские потоки, большинство массивных черных дыр рентгеновским излучением не обладают. Последние наблюдения показали, что “тихие” супермассивные черные дыры присутствуют во всех галактиках, в том числе и в нашей, и могут стать ключом в вопросе понимания происхождения вселенной.
С помощью космического спектрографа Хаббла удалось запечатлеть  “автограф” сверхмассивной черной дыры, расположенной в центре галактики  М84. Несмотря на то, что гравитация не позволяет свету покинуть окрестность  черной дыры, ее присутствие можно обнаружить по падающему по спирали с огромным ускорением на поверхность черной дыры межзвездному веществу, скорость которого (определенная по эффекту Доплера), составляет примерно 380 км/с на расстоянии 26 световых лет от центра М84.
Два астронома  из университета Дарэма (Великобритания) д-ра Кристин Дон и Марек Гирлински представили для публикации в ежемесячном вестнике Королевского астрономического общества статью, в которой они обосновывают существование в космосе "настоящих" черных дыр, то есть объектов, не имеющих поверхности в обычном понимании этого слова. Дон и Гирлински провели исследования целого ряда известных горизонтов событий, чтобы определить разницу между объектами, которые считаются черными дырами и нейтронными звездами. Любая материя, захваченная мощным гравитационным полем любого из этих объектов, начинает двигаться по спирали к их центру, достигая при этом скорости, равной половине скорости света, и преобразуя часть гравитационной энергии в рентгеновское излучение. То есть тут все происходит одинаково. В случае "настоящей" черной дыры материя должна просто навсегда сгинуть в этой дыре, унеся туда оставшуюся у нее энергию, а в случае нейтронной звезды материя падает на ее поверхность, и при этом выделяется оставшаяся у этой материи энергия. Поэтому рентгеновское излучение нейтронных звезд и "настоящих" черных дыр должно выглядеть по разному. Дон и Гирлински в своих выводах опирались на данные, полученные космическим рентгеновским телескопом Rossi X-ray Timing Explorer за 6 лет наблюдений. И оказалось, что спектры рентгеновского излучения нейтронных звезд и черных дыр сильно отличаются, и отличаются они прежде всего наклоном огибающей спектра в коротковолновой и длинноволновых областях рентгеновского диапазона длин волн. Авторы считают, что это отличие можно объяснить только тем, что нейтронная звезда имеет поверхность, а черная дыра - нет. Совсем недавно орбитальный телескоп, носящий имя американского астронома Хаббла, передал на Землю эпохальные снимки. Они показывают центр крупной галактики "Центавр-А" (NGC 5128), расположенной по космическим меркам недалеко от Земли - десять миллионов световых лет. Находящаяся там массивная черная дыра "заглатывает" маленькую соседнюю галактику. Специальная фотокамера отчетливо показала окружающий галактику NGC 5128 темный пояс из пыли со множеством светящихся голубым цветом недавно рожденных звезд и пылевых сгущений, погруженных в газовые облака. Снимки, сделанные в инфракрасных лучах, помогли астрономам заглянуть за пылевой занавес. Они открыли там изогнутую шайбу горячего газа, которая всасывается в черную дыру. Этот пожиратель материи оказался очень компактным: он немного больше нашей солнечной системы и содержит массу, равную одному миллиарду солнц.
Самым надежным доказательством существования  черных дыр стало бы обнаружение излучаемых ими гравитационных волн. То, что гравитация способна распространяться подобно свету, известно с начала XX века, но до сих пор все попытки зафиксировать гравитационные волны оканчивались неудачей - слишком уж они слабы. Но техника постоянно совершенствуется, и сейчас в процессе создания находятся несколько гравитационных телескопов, как наземных, так и космических. Не исключено, что уже в первые годы работы они обнаружат вспышки гравитационного излучения, сопровождающие рождение одиночной дыры или слияние двух черных дыр.
Итак, имеются 3 способа обнаружения этих объектов:
1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой «пустоте» находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.
2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать – там должна быть черная дыра.
3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования – пять миллиардов лет. Обнаружить гравитационное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей.
Эффект Доплера  заключается в том, что линии  в спектре движущегося источника  смещены на величину пропорциональную скорости приближения или удаления от наблюдателя.
Математическое  описание.
Для любого астрономического объекта (планеты или звезды) можно  вычислить так называемую скорость убегания, или вторую космическую  скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет – это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, «убежавшего» на бескончно большое расстояние. Эта скорость определяется формулой V2=2GM/R, где M – масса космического объекта, R – его радиус, G – гравитационная постоянная. Отсюда легко получается радиус тела заданной массы (позднее получивший название гравитационный радиус - rg), при котором скорость убегания равна скорости света: rg=2GM / c2.
Это значит, что  звезда, сжатая в сферу радиусом rg < 2GM / c2, перестанет излучать – свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.
Несложно рассчитать, что Солнце (его масса 2·1033 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 1016 г/см3. Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.
Казалось невероятным, что в природе могут найтись  силы, способные сжать звезду до столь ничтожных размеров. Поэтому  выводы из работ Митчелла и Лапласа  более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.
Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварцшильд, проведя  анализ уравнений общей теории относительности  Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = rg.
Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Точки, расположенные на сферической поверхности радиусом rg, образуют ту самую поверхность, с которой скорость убегания равна скорости света и за границей которой мы не сможем получить никакой информации.
Тесные  двойные системы.
В космосе часто  встречаются звездные пары, в которых  одним компонентом является звезда-гигант (или сверхгигант), а вторым –  маленькое компактное тело, которое  может являться или черной дырой  или нейтронной звездой. Имеются  косвенные доказательства существования черных дыр более чем в 10 тесных двойных системах. Об их наличии свидетельствует отсутствие проявлений твердой поверхности, характерных для нейтронных звезд, и наличие массы у невидимого компонента более 3 солнечных. Ее гравитационное поле может оказаться достаточно сильным, чтобы срывать вещество с нормальной дыры. Газ начинает отделяться от внешних слоев звезды и падать на невидимый спутник по спирали, причем сам газ будет доступен наблюдениям. Газ постоянно ускоряется, его частицы постоянно взаимодействуют между собой – в результате газ сильно разогревается и становится источником высокоэнергичного излучения в гамма и рентгеновском диапазонах. Следовательно, излучает не сама черная дыра, а газ на подходе к ней. Такое излучение невозможно принять с Земли, его не пропустит атмосфера. Его регистрируют при помощи внеатмосферных приемников рентгеновского излучения (космические обсерватории). Видимая звезда выдает наличие своего невидимого партнера своим движением. Она обращается вокруг “пустого” места. Одним из наиболее вероятных кандидатов в черные дыры является ярчайший источник рентгеновских лучей в созвездии Лебедя – Лебедь Х-1. Газовый диск с газовыми струями, излучающих рентген, огромная голубая звезда с массой не менее 10 солнечных, кружащая вокруг рентгеновского источника – вот портрет далекой звезда V 1343 в созвездии Орла, более известной как объект SS 433. До 1978г эта звезда не привлекала к себе особого внимания. Открытия последовали в 1979-1980гг и продолжаются до сих пор. Наблюдая за звездой ночью, американским и итальянским астрономам удалось обнаружить в спектре этой звезды 3 системы эмиссионных линий водорода и гелия. Кроме ярких основных и неподвижных линий имелись 2 системы линий, “гулявших” по спектру с периодом 163 дня. Эти смещения говорили о движении вещества в двух противоположных направлениях со скоростью, достигающей четверти скорости света ~ 78000км/с. Детальные наблюдения показали, что SS 433 – тесная затменная система, период обращения которой равен 13,1 суток. Видимая голубая звезда имеет температуру около 30000К и обладает светимостью, примерно в миллион раз превышающую светимость солнца. Она слишком велика, чтобы сохранить свою целостность в поле тяготения очень компактной второй звезды, и поэтому с нее постоянно перетекает вещество на соседку, образуя аккреционный диск. Наличие рентгеновского излучения окончательно подтвердило наличие компактного тела (черная дыра или нейтронная звезда), ведь только при аккреции на них испускается рентгеновское излучение. Компактный источник окружен непрозрачным и очень ярким слоем плазмы с температурой в сотни тысяч градусов. Рентгеновские спектры плазмы выявили мощнейшую ионизацию атомов железа, до гелие-водородоподобных состояний (т.е. вместо 26 электронов имеется только 1 или 2). Остальные выбиваются со своих орбит ударами релятивистских электронов или рентгеновскими квантами. Аккреционный диск раз в 13 дней затмевает звезду.
Другие рентгеновские  источники в нашей галактике  считаются черными дырами на основании  иных - например, спектроскопических - аргументов. К примеру, полагают, что гамма-излучение (с энергиями более 100кэВ) внутренних частей аккреционного диска могло бы свидетельствовать о наличии черной дыры, а не нейтронной звезды, так как жесткое излучение отражалось бы поверхностью нейтронной звезды и охлаждало диск. Если это действительно так, то многие "гамма - новые", в которых измерение массы невозможно (из-за отсутствия оптической компоненты или иных сложностей), могут быть также хорошими кандидатами в черные дыры. Особенно это относится к Новой Орла 1992 года (Nova Aquila 1992) и источнику 1 E 17407-2942, у которых наблюдаются также радиовыбросы - "джеты". Эти "микроквазары", в которых идет как аккреция, так и выброс
 
 
 
вещества, демонстрируют интересную связь высокоэнергичных явлений  на масштабах звезд и галактик.

 
 
 

Гравитационные  волны.
Теория тяготения  Эйнштейна предсказала существование  гравитационных волн. Они подобны электромагнитным, которые являются быстро меняющимся электромагнитным полем, “оторвавшимся” от своего источника и распространяющимся в пространстве с предельно большой скоростью — скоростью света. Точно так же гравитационные волны являются изменяющимся гравитационным полем, “оторвавшимся” от своего источника и летящим в пространстве со скоростью света.
Известно, чтобы  обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда  на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга. При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. Одним шариком не обойтись, т.к. если на шарик не действуют никакие посторонние силы, то он находится в поле гравитационной волны в состоянии невесомости. На шарике не ощущается никаких сил тяготения, и поэтому невозможно обнаружить проходящую гравитационную волну. Два шарика, находясь на некотором отдалении, подвергаются воздействию поля чуть-чуть по-разному, и между ними возникает относительное движение. Вот это относительное движение и можно измерить.
В случае электромагнитных волн для их обнаружения не обязательно  брать даже шарик — существуют разные типы электромагнитных антенн. В случае же гравитационных волн придуманы  тоже разные конструкции гравитационных антенн.
Но все выглядит относительно просто только теоретически. На самом деле в сколько-нибудь привычных  для нас условиях возникающие  гравитационные волны крайне слабы: они должны излучаться при ускоренных движениях массивных тел. Но даже при движении небесных тел излучение гравитационных волн ничтожно. Так, при движении планет в Солнечной системе излучается гравитационная энергия, равная мощности всего лишь сотни электрических лампочек. Хотя это число и может показаться большим по нашим земным меркам, оно ничтожно по сравнению, скажем, с мощностью светового излучения Солнца, которое в 1023 раз больше. Попытки же создать лабораторные излучатели гравитационных волн пока и вовсе обречены на неудачу.
Скажем, можно  сделать излучатель гравитационных волн в виде быстро вращающегося стержня. Если взять стальную болванку длиной 20 метров, массой 500 тонн и раскрутить ее до предела на разрыв центробежными силами (частота вращения при этом около 30 герц), то она будет излучать всего 10-22 доли эрга в секунду.
Приведенные примеры  показывают, насколько трудны попытки  обнаружения гравитационных волн. В  прямых экспериментах на Земле эти  волны пока не обнаружены, хотя в  разных лабораториях мира построены  и строятся уже десятки гравитационных антенн, предназначенных для приема волн тяготения из космоса. Некоторые астрономические наблюдения прямо показывают, что гравитационные волны излучаются при движении небесных тел. При движении планет или, например, движении звезд в двойных звездных системах излучаются гравитационные волны, уносящие энергию. Эти потери энергии обычно очень малы. Но чем больше масса движущихся небесных тел и меньше расстояние между ними, тем интенсивнее излучение. Потери энергии в системе двойной звезды приводят к постепенному сближению звезд и уменьшению периода их обращения вокруг центра масс. Конечно, это происходит крайне медленно, и тем не менее с помощью специальных способов наблюдения такое уменьшение периода в одном случае удалось зафиксировать, причем в точном согласии с предсказаниями теории Эйнштейна.
Вернемся к  движению тела вокруг черной дыры по круговой орбите. При этом будет происходит излучение гравитационных волн и  постепенное уменьшение радиуса  орбиты. Так будет продолжаться до тех пор, пока радиус не примет критического значения трех гравитационных радиусов. На меньших расстояниях движение уже неустойчиво. Следовательно, тело, достигнув критической орбиты, сделав еще несколько оборотов и излучив некоторое количество энергии, свалится с этого расстояния в черную дыру.
Какое общее  количество энергии излучит тело в виде гравитационных волн за все  время, пока оно двигалось вокруг черной дыры по окружности с медленно уменьшающимся радиусом? Излучение  происходит, как мы видели, крайне малоинтенсивно, но сам процесс этот длится чрезвычайно долго! Таким образом, полное количество излученной энергии будет велико. Известно, что при ядерных превращениях, например, водорода в гелий или в еще более тяжелые элементы, определенная доля массы превращается в энергию. Максимально во всех видах реакций эта доля может составить около одного процента. В случае же излучения гравитационных волн при движении вокруг черной дыры излучается энергия в шесть раз больше!
Гравитационные  волны крайне слабо взаимодействуют  с веществом. Поэтому выделяющуюся в виде гравитационных волн энергию очень трудно уловить и использовать для практических нужд.
Академик В.А. Фок был первым, кто обратил  внимание на возможность использования  астрофизических катастроф как  источника мощного гравитационного излучения (1948).Согласно современным расчетам, при слиянии двух нейтронных звезд излучается около 1045 Дж в виде всплеска гравитационного излучения, то есть около 1% от полной энергии (Е = mc2) двух звезд. Гравитационная волна растягивает и сжимает пространство. Если в ее поле есть две разнесенные системы координат, то волна вызывает их относительное колебательное движение. У гравитационной волны возможны две поляризации. В первой волна в течение полупериода сжимается по вертикали и растягивается по горизонтали, в следующий полупериод - наоборот. Вторая возможная поляризация сдвинута на 45° по отношению к первой. В настоящее время ведутся поиски гравитационных волн длиной от размера Вселенной до нескольких метров, иными словами, в диапазоне частот от 10-16 до 10Гц, то есть частотный диапазон поисков перекрывает более чем 20 порядков. Хорошая чувствительность уже достигнута или планируется в интервале частот от 10 до 10Гц, или на длинах волн от 30 тыс. км до 30 км. На этот диапазон рассчитаны проекты LIGO и VIRGO. На более низкие частоты - от 10-1 до 10-4 Гц гравитационного излучения (длины волн порядка расстояния от Земли до Солнца) - нацелен проект LISA - лазерная космическая антенна, которая, надеюсь, будет запущена в недалеком будущем.
Проект LIGO (Laser Interferometer Gravitational wave Observatory) - лазерная интерферометрическая гравитационно-волновая обсерватория - изначально национальный проект США. Проект VIRGO носит латинское название скопления галактик в созвездии Девы (примерно 30 Мпс от Земли), изначально итало-французский.
LISA (Laser Interferometer Space Antenna) - лазерно-интерферометрическая  антенна в космосе - совместный  проект Европейского космического  агентства и Национального управления  по аэронавтике и исследованию  космического пространства США.
LIGO/VIRGO - это, по  существу, сеть антенн относительно  высокочастотного диапазона. Она  включает две антенны LIGO - одна  в Хэнфорде, другая в Ливингстоне  (обе в США) и антенну VIRGO недалеко от Пизы (Италия). К сети  примыкают более скромные по размерам (и соответственно по ожидаемой чувствительности) антенна в Японии (ТАМА) и в северной части Германии (GEO-600). Необходимо использовать всю информацию, которая регистрируется этими антеннами, то есть всю сеть, чтобы получить максимум сведений о свойствах гравитационных волн и их источников.
Собственно детектор антенны представляет собой четыре массивных зеркала, сделанных либо из плавленного кварца, либо из сапфира, которые подвешены на тонких кварцевых  нитях длиной около 1 м . Все зеркала размещены в вакуумных камерах, соединенных вакуумными трубами. Расстояние между зеркалами в каждой паре 4 км. Когда гравитационная волна проходит, она сначала сдвигает одну пару зеркал и раздвигает другую, в следующий период - наоборот. Лазерный интерферометр регистрирует эти колебания.
Принцип использования  пары свободных масс-зеркал и лазерного  интерферометра для регистрации  их малых колебаний, вызванных гравитационной волной, предложен членом-корреспондентом  РАН В.И. Пустовойтом и профессором  М.Е. Герценштейном в 1962 г.
Несколько чисел  для иллюстрации: при расстоянии 4 км между зеркалами и амплитуде  волны 10-21 величина амплитуды относительных колебаний зеркал 4х10-16 см при оптимальной ориентации плеч антенны относительно источника. На прототипе LIGO, где расстояние между зеркалами составляло 40 м, после многих лет работы такая чувствительность при регистрации взаимных колебаний моделей зеркал уже достигнута. В 2002 г. в LIGO I при расстоянии между зеркалами 4 км чувствительность должна быть немного лучше, чем в прототипе. На следующем этапе (LIGO II) в 2006 г. чувствительность должна быть повышена: можно будет зарегистрировать амплитуду колебаний зеркал около 10-17 см.
Ясно, что достижение такой чувствительности - это очень  серьезная технологическая задача, ведь величина амплитуды колебаний в 10 тыс. раз меньше размера атомного ядра (10-13 длины оптической волны, или половина длины квантовой волновой функции 30-килограммового зеркала). Потребовалось весьма значительно усовершенствовать технологию высокочувствительных измерений, повысить стабильность лазеров, увеличить отражающую способность оптических зеркал, существенно развить квантовую теорию измерений и создать соответствующие технологии.
Ответственность за разработку конструкций и операции на микроинтерферометрах лежат на Калифорнийском технологическом институте. Но существует и международное научное сообщество, которое формулирует задачи, проводит иссле
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.