На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Опыты Менделя и современное понимание наследственности

Информация:

Тип работы: реферат. Добавлен: 19.05.2012. Сдан: 2011. Страниц: 3. Уникальность по antiplagiat.ru: < 30%

Описание (план):


  Министерство  образования и науки Российской Федерации 

  Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет «МИФИ»» Обнинский институт атомной энергетики – филиал НИЯУ МИФИ  

  Социально – экономический факультет
  Кафедра экономики, экономико-математических методов и информатики 
 
 

Реферат
По дисциплине  «Концепции современного естествознания»
На тему: «Опыты Менделя и современное  понимание наследственности»
Выполнила:
Студентка 2 курса  группы ПИЭ-С10                                            Чурилина В.А.
Обнинск 2010
     Генетика - область биологии, изучающая наследственность и изменчивость. Человек всегда стремился  управлять живой природой: структурно-функциональной организацией живых существ, их индивидуальным развитием, адаптацией к окружающей среде, регуляцией численности и т. д. Генетика ближе всего подошла к решению этих задач, вскрыв многие закономерности наследственности и изменчивости живых организмов и поставив их на службу человеческому обществу. Этим объясняется ключевое положение генетики среди других биологических дисциплин.
     То, что организмы передают признаки и свойства своим потомкам, люди на интуитивном уровне знали давно. Эти знания использовались в сельском хозяйстве, когда крестьянин, желая получить побольше зерна, старался оставить для посева самые крупные семена от самых урожайных растений. Естественно, понять закономерности наследования признаков люди долгое время не могли. Первые попытки объяснения того факта, что дети обычно походи на родителей предпринимал еще великий ученый и врач Древней Греции – Гиппократ. Он говорил, что семя мужчины и семя женщины, из которых при слиянии возникает ребенок, изготовляются во всех частях организма родителей и поэтому несут в себе информацию об этих частях. При слиянии семени происходит борьба между признаками отца и матери, и от того, кто победит, зависит пол ребенка и то, на кого он будет похож.
     Первые  идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Чарльз Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков. Законы наследственности, открытые Г. Менделем, заложили основы становления генетики как самостоятельной науки. Метод искусственной гибридизации был разработан еще за 100 лет до классических генетических работ Менделя, затем было открыто доминирование признаков. Почему же создателем современной генетики считается Грегор Мендель?
     Г. Мендель обладал важнейшими для настоящего ученого качествами. Во-первых, Г.Мендель сумел сформулировать конкретный вопрос, на который ему хотелось бы получить ответ, и, во-вторых, он умел правильно понимать и трактовать результаты опытов, т.е. был способен сделать корректные выводы из результатов своих экспериментов. Результаты многолетней работы Г.Мендель обобщил в публикации «Опыты над растительными гибридами», которая вышла в свет 8 февраля 1865г. В этой статье были изложены основные закономерности наследования признаков, которые легли в основу современной генетики. Таким образом, генетика – одна из немногих научных дисциплин, у которых есть точная дата рождения. Однако работы  Г.Менделя опередили свое время; они были оценены по достоинству только через 35 лет.
     В 1900г. Три исследователя (Гуго де Фриз, Карл Эрих Корренс, Эрих Чермак) независимо друг от друга на разных объектах переоткрыли законы Менделя. Результаты работ этих исследователей доказали правильность закономерностей, установленных в свое время Г.Менделем. Они честно признали его первенство в этом вопросе и присвоили этим закономерностям имя Менделя. 1900 год считается официальной датой рождения науки генетики.
     Мендель поставил перед собой цель выяснить правила наследования отдельных  признаков гороха. Эту работу исследователь вел в течение 8 лет, изучив за это время более 10 000 растений гороха.
     Горох был удобен по различным соображениям. Потомство этого растения обладает рядом чётко различимых признаков - зелёный или жёлтый цвет семядолей, гладкие или, напротив, морщинистые семена, вздутые или перетянутые бобы, длинная или короткая стеблевая ось соцветия и так далее. Переходных, половинчатых "смазанных" признаков не было. Всякий раз можно было уверенно говорить "да" или "нет", иметь дело с альтернативой. А потому и оспаривать выводы Менделя, сомневаться в них не приходилось. И все положения теории Менделя уже никем не были опровергнуты и по заслугам стали частью золотого фонда науки.
     В своих работах он использовал  гибридологический метод. Суть этого  метода состоит в скрещивании (т.е. гибридизации) организмов, отличных по каким-либо признакам и в последующем анализе характера проявления этих признаков у потомства.
     Мендель занимался селекционированием гороха, и именно гороху, научной удаче  и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.
     Некоторые исследователи выделяют не три, а  два закона Менделя. При этом некоторые  ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет о трех законах Менделя.
ПЕРВЫЙ  ЗАКОН ЕДИНОБРАЗИЯ  ГИБРИДОВ ПЕРВОГО  ПОКОЛЕНИЯ
Данный закон  утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F1), все особи которого гетерозиготны. Все гибриды F1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны - Аа), а значит, и по фенотипу.
ВТОРОЙ  ЗАКОН РАСЩЕПЛЕНИЯ
Этот закон  называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки - гаметы, то одна их половина несет один аллель данного гена, а вторая - другой. Поэтому при скрещивании таких гибридов F1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами, как исходных родительских форм, так и F1.
     В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов F1 гамет двух типов, в результате чего среди гибридов F2 выявляются особи трех возможных генотипов в соотношении 1АА: 2 Аа: 1аа. Иными словами, «внуки» исходных форм - двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя.
     Однако  это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования  выделяются 75% особей с доминантным  и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т. е. наблюдается расщепление 1:2:1 . 

ТРЕТИЙ  ЗАКОН НЕЗАВИСИМОГО КОМБИНИРОВАНИЯ (НАСЛЕДОВАНИЯ) ПРИЗНАКОВ
     Этот  закон говорит о том, что каждая пара альтернативных признаков ведет  себя в ряду поколений независимо друг от друга, в результате чего среди  потомков первого поколения (т.е. в  поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F 1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот - к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).
     Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, - он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга. 
 
 
 
 

ЗНАЧЕНИЕ  РАБОТ МЕНДЕЛЯ  ДЛЯ РАЗВИТИЯ ГЕНЕТИКИ 

     В 1863г. Мендель закончил эксперименты и в 1865 г. на двух заседаниях Брюннского общества естествоиспытателей доложил результаты своей работы. В 1866 г. в трудах общества вышла его статья «Опыты над растительными гибридами», которая заложила основы генетики как самостоятельной науки. Это редкий в истории знаний случай, когда одна статья знаменует собой рождение новой научной дисциплины. Почему принято так считать?
     Из семилетней работы Менделя, по праву составляющей фундамент генетики вытекали следующие следствия. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение. Во-вторых, Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК - вот логическое следствие и магистральный путь развития генетики ХХ века на основе идей Менделя. 

     Вывод 

     Менделевская  теория наследственности, т.е. совокупность представ-лений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

     Опыты Менделя послужили основой для развития современной генетики - науки, изучающей два основных свойства организма - наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно  выбрал объект исследования;

2) он проводил анализ  наследования отдельных  признаков в потомстве  скрещиваемых растений, отличающихся по  одной, двум и  трем парам контрастных  альтернативных признаков.  В каждом поколении  велся учет отдельно  по каждой паре  этих признаков;

3) он не просто  зафиксировал полученные  результаты, но и  провел их математическую  обработку.

     Перечисленные простые приемы исследования составили  принципиально новый, гибридологический  метод изучения наследования, ставший  основой дальнейших исследований в генетике.

     Человечество  может гордиться выдающимися  достижениями генетиков. В частности, была завершена программа «Геном человека», в результате чего расшифрован  соответствующий код наследственности. Расшифрованы так же геномы целого ряда других организмов.
     Второе  выдающееся событие в генетике –  обнаружение ведущей роли регуляторных систем в химически переформированном  развитии живых систем и обусловленном  им формообразовательном процессе. Выявлены каскады генов, запускаемые специализированными  генами – «господами», и реализующие программы развития различных регионов живой системы.
     На  основании достижений генетики, совместных с молекулярной биологией и экспериментальной  эмбриологией, стали возможны по клонированию животных, которые не приносят особой практической пользы, но позволяют решать важные и актуальные фундаментальные проблемы.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.