На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 08.08.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


24
Министерство образования и науки Российской Федерации
Вятский государственный гуманитарный университет
Математический факультет
Кафедра математического анализа и МПМ
Дипломная работа
Метризуемость топологических пространств

Выполнила
студентка 5 курса
математического факультета
Побединская Татьяна Викторовна
_______________________________
(подпись)
Научный руководитель
к.ф.-м.н., доцент кафедры математического анализа и МПМ Варанкина Вера Ивановна
_______________________________
(подпись)
Рецензент
_______________________________
(подпись)
Допущена к защите в ГАК
Зав. кафедрой______________________________к.п.н., доцент Крутихина М.В.
(подпись)
«_____» _______________2004 г.
Декан факультета_________________________к.ф.-м.н., доцент Варанкина В.И.
(подпись)
«_____» _______________2004 г.
КИРОВ
2004
Содержание
    Введение 3
    Глава I. Основные понятия и теоремы 4
    Глава II. Свойства метризуемых пространств 10
    Глава III. Примеры метризуемых и неметризуемых пространств 21
    Библиографический список 24

Введение

Тема дипломной работы - «Метризуемость топологических пространств».

В первой главе работы вводятся основные определения, связанные с понятиями метрического и топологического пространств.

Во второй главе рассматриваются и доказываются следующие свойства метризуемых пространств:

1. Метризуемое пространство хаусдорфово.

2. Метризуемое пространство нормально.

3. В метризуемом пространстве выполняется первая аксиома счетности.

4. Метризуемое пространство совершенно нормально.

5. Для метризуемого пространства следующие условия эквивалентны:

1) сепарабельно,

2) имеет счетную базу,

3) финально компактно.

6. Любое метризуемое топологическое пространство может быть метризовано ограниченной метрикой.

7. Произведение счетного числа метризуемых пространств метризуемо.

В третьей главе рассматриваются примеры метризуемых и неметризуемых пространств.

Глава I. Основные понятия и теоремы

Определение. Метрическим пространством называется пара , состоящая из некоторого множества (пространства) элементов (точек) и расстояния, то есть однозначной неотрицательной действительной функции , определенной для любых и из и удовлетворяющей трем условиям:

1) (аксиома тождества);

2) (аксиома симметрии);

3) (аксиома треугольника).

Определение. Пусть - некоторое множество. Топологией в называется любая система его подмножеств , удовлетворяющая двум требованиям:

1. Само множество и пустое множество принадлежат .

2. Объединение любого (конечного или бесконечного) и пересечение любого конечного числа множеств из принадлежат .

Множество с заданной в нем топологией , то есть пара , называется топологическим пространством.

Множества, принадлежащие системе , называются открытыми.

Множества , дополнительные к открытым, называются замкнутыми множествами топологического пространства .

Определение. Совокупность открытых множеств топологического пространства называется базой топологического пространства , если всякое открытое множество в может быть представлено как объединение некоторого числа множеств из .

Теорема 1. Всякая база в топологическом пространстве обладает следующими двумя свойствами:

1) любая точка содержится хотя бы в одном ;

2) если содержится в пересечении двух множеств и из , то существует такое , что .

Определение. Открытым шаром или окрестностью точки радиуса в метрическом пространстве называется совокупность точек , удовлетворяющих условию . При этом - центр шара, - радиус шара.

Утверждение 1. Для любого , принадлежащего -окрестности точки , существует окрестность радиуса , включенная в -окрестность точки .

Доказательство. Выберем в качестве :.

Достаточно доказать для произвольного импликацию . Действительно, если , то

Получаем, что , что и требовалось доказать.

Теорема 2. Совокупность всех открытых шаров образуют базу некоторой топологии.

Доказательство. Проверим свойства базы (теорема 1).

· Свойство первое очевидно, так как для любого выполняется для любого .

· Проверим второе свойство.

Пусть , и , тогда, воспользовавшись утверждением 1, найдем такое , что Теорема доказана.

Определение. Топологическое пространство метризуемо, если существует такая метрика на множестве , что порожденная этой метрикой топология совпадает с исходной топологией пространства .

Аксиомы отделимости

Аксиома . Для любых двух различных точек топологического пространства окрестность хотя бы одной из них не содержит другую.

Аксиома . Каждая из двух произвольных точек пространства имеет окрестность, не содержащую вторую точку.

Предложение. является - пространством тогда и только тогда, когда для любого множество замкнуто.

Доказательство.

Необходимость. Пусть . Так как является -пространством, то существует окрестность , не содержащая .

Рассмотрим

Докажем, что . Применим метод двойного включения:

· Очевидно, что по построению множества .

· .

Пусть отсюда для любого отличного от существует окрестность , значит , тогда .

Множество - открыто, как объединение открытых множеств.

Тогда множество - замкнуто, как дополнение открытого множества.

Достаточность. Рассмотрим . По условию замкнутые множества. Так как , то . Множество -открыто как дополнение замкнутого и не содержит . Аналогично доказывается существование окрестности точки , не содержащей точку

Что и требовалось доказать.

Аксиома ( аксиома Хаусдорфа). Любые две точки пространства имеют непересекающиеся окрестности.

Аксиома . Любая точка и не содержащее ее замкнутое множество имеют непересекающиеся окрестности.

Определение. Пространства, удовлетворяющие аксиомам () называются -пространствами (-пространства называют также хаусдорфовыми пространствами).

Определение. Пространство называется нормальным или -пространством, если оно удовлетворяет аксиоме , и всякие его два непустые непересекающиеся замкнутые множества имеют непересекающиеся окрестности.

Определение. Система окрестностей называется определяющей системой окрестностей точки , если для любой окрестности точки найдется окрестность из этой системы, содержащаяся в .

Определение. Если точка топологического пространства имеет счетную определяющую систему окрестностей, то говорят, что в этой точке выполняется первая аксиома счетности. Если это верно для каждой точки пространства, то пространство называется пространством с первой аксиомой счетности.

Определение. Две метрики и на множестве называются эквивалентными, если они порождают на нем одну и ту же топологию.

Пример. На плоскости для точек и определим расстояние тремя различными способами:

1. ,

2. ,

3. .

· Введенные расстояния являются метриками. Проверим выполнимость аксиом метрики для введенных расстояний.

1. 1)

2) так как и , то вторая аксиома очевидна:

3) рассмотрим точки ,, и докажем следующее неравенство:

Возведем это неравенство в квадрат:

.

Так как и (поскольку ) и выражение есть величина неотрицательная, то неравенство является верным.

2. 1)

2) так как и , то вторая аксиома очевидна: .

3) рассмотрим точки ,, и докажем следующее неравенство: .

Тогда и .

3. 1)

2) так как и , то вторая аксиома очевидна:

.

3) рассмотрим точки ,,.

Неравенство: - очевидно.

· Введенные метрики и эквивалентны, то есть задают одну и ту же топологию.

Пусть метрика порождает топологию , - топологию и - топологию . Достаточно показать два равенства.

Покажем, что .

Рассмотрим множество, открытое в и покажем, что открыто в . Возьмем некоторую точку и изобразим шар с центром в этой точке, который целиком лежит в . Шар в - квадрат, шар в - круг. А квадрат всегда можно заключить в круг. Тогда открыто и в .

Аналогично доказывается, что . А тогда и .

Глава II. Свойства метризуемых пространств

Свойство 1. Метризуемое пространство хаусдорфово.

Доказательство. Пусть . Возьмем . Докажем, что .

Предположим, что , тогда существует , т.е. и . Тогда, . Получили противоречие. Следовательно, .

Следствие. Метризуемое пространство является - пространством.

Определение. Расстоянием от точки до множества в метрическом пространстве называется .

Утверждение 2. Пусть множество фиксировано; тогда функция , сопоставляющая каждой точке расстояние , непрерывна на пространстве .

Доказательство. Воспользуемся определением непрерывности: функция называется непрерывной в точке , если .

Из неравенства , где , получаем . Аналогично . Из полученных неравенств следует .

Для произвольного возьмем . Тогда из неравенства следует . Непрерывность доказана.

Лемма. - замкнутое множество в метрическом пространстве . Для любого расстояние от до множества положительно.

Доказательство.

Множество замкнуто, отсюда следует, что множество - открыто. Так как точка принадлежит открытому множеству , то существует такое, что . Так как , то для некоторого . Поэтому для любого . Следовательно, , что и требовалось доказать.

Свойство 2. Метризуемое пространство нормально.

Доказательство. По доказанному метризуемое пространство является

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.