На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Природа радиоактивности и типы ядерных превращений. Использование радиофармацевтических препаратов для ранней диагностики заболеваний различных органов человека и целей терапии. Создание позитронного эмиссионного томографа. Развитие ксеноновой анестезии.

Информация:

Тип работы: Курсовик. Предмет: Медицина. Добавлен: 28.11.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


39
Применение радионуклидов в ядерной медицине

Введение

Достижения в области физики атомного ядра оказывают очень большое влияние на развитие почти всех отраслей человеческого знания. Овладение атомной энергией дало в руки ученых самых разнообразных специальностей новые средства и способы научного исследования. Неизмеримо выросли возможности научного познания. Научная медицина с самого своего зарождения черпает в физике и химии новые идеи и средства для предупреждения болезней и борьбы с ними. Стоит напомнить, например, что открытие в конце прошлого века рентгеновских лучей привело к тому, что теперь без рентгеновского аппарата не обходится даже небольшое лечебное учреждение. Исключительное значение имеет для медицины использование атомной энергии. Эта отрасль науки обогатилась новыми, весьма ценными методами изучения жизненных процессов, диагностики и лечения болезней.
Областью массового использования радионуклидов является ядерная медицина. На ее нужды расходуется более 50 % годового производства радионуклидов во всем мире. Как известно, в состав живого организма входят, помимо 5 основных элементов (кислорода, водорода, углерода, азота и кальция), еще 67 элементов периодической системы Менделеева, поэтому в настоящие время трудно представить клинику у нас или за рубежом, в которой при установлении диагноза заболевания не использовались бы различные радиоактивные препараты и меченные ими соединения. Радионуклиды применяются в ядерной медицине в основном в виде радиофармацевтических препаратов (РФП) для ранней диагностики заболеваний различных органов человека и для целей терапии. Радиофармацевтическим препаратом (РФП) называется химическое соединение, содержащие в своей молекуле определенный радиоактивный нуклид, разрешенное для введения человеку с диагностической или лечебной целью. Отличительной особенностью диагностического РФП при этом является отсутствие фармакологического эффекта. Облучение в медицине направлено на исцеление больного. Однако нередко дозы оказываются неоправданно высокими. Пациент должен получать минимальную дозу при обследовании. В связи с этим одной из важнейших задач, стоящих перед разработчиками РФП, является снижение доз облучения пациентов во время проведения различных исследований с использованием радионуклидов, то есть выбор таких радионуклидов и меченных ими соединений, применение которых позволяет получать необходимую диагностическую информацию при минимально возможных дозах облучения пациентов.
Систематически радионуклиды для медицинских целей стали применять с начала 40-х годов. Именно тогда была установлена строгая закономерность распределения радиоактивного йода при различных патологических состояниях щитовидной железы. В дальнейшем, использование соединений, меченных радиоактивными нуклидами, позволило определить локализацию и размеры первичных опухолей, выявить распространение опухолевых процессов, контролировать эффективность лекарственного лечения. Благодаря большому разнообразию радионуклидов и меченных ими препаратов в настоящее время можно изучать практически любую физиологическую и морфологическую системы организма человека: сердечно-сосудистую и кроветворную, мочевыделительную и водно-солевого обмена, дыхательную и пищеварительную, костную и лимфатическую и т.п.
1. Радиоактивность и радиоактивные изотопы
Радиоактивные изотопы и соединения, меченные радиоактивными изотопами, широко применяются в самых разных областях человеческой деятельности. Промышленность и технологический контроль, сельское хозяйство и медицина, средства связи и научные исследования -- охватить весь спектр применения радиоактивных изотопов практически невозможно, хотя все они возникли чуть более, чем за 100 лет.
Радиоактивность (radioactivity) -- это обозначение удивительного явления природы, открытого Беккерелем в конце XIX века, суть которого заключается в самопроизвольном спонтанном превращении атомных ядер некоторых элементов в другие, которое сопровождается выделением трёх видов "лучей".
Природу лучей установили быстро: б-лучи -- это двукратно ионизированные атомы гелия, в-лучи -- это электроны, г-лучи -- это жесткое коротковолновое электромагнитное излучение. Элементы, способные к таким превращениям стали называться радиоактивными, т.е. способными к этому превращению. В зависимости от типа излучения, радиоактивные атомы стали определять соответственно как б, в или г излучатели или источники. Правда, вскоре было установлено, что некоторые радиоактивные атомы излучают сразу два (а возможно, и три) вида лучей, поэтому такая классификация дополняется пояснениями -- это "чистый" б-излучатель или имеется сопутствующее г-излучение.
К первоначальным трём типам ядерных превращений (б, в и г -- радиоактивный распад) добавились новые, однако, общие закономерности для всех остались неизменными. В конце ХХ века было рекомендовано термин "изотоп" заменить на "нуклид" и, соответственно, "радиоактивный изотоп" на "радионуклид".[3]В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов.
Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик - сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным. Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада: радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного.
В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце - последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.В настоящее время известно 106 химических элементов. Из них только 81 элемент имеет как стабильные, так и радиоактивные изотопы. Для остальных 25 элементов известны только радиоактивные изотопы. В общей сложности в настоящее время доказано существование около 1700 нуклидов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины). Из этих нуклидов только 271 нуклид стабилен, остальные радиоактивные. Около 300 из них находят или могут найти практическое применение в различных сферах человеческой деятельности. Основные источники производства радионуклидов для ядерной медицины следующие: ядерные реакторы, ускорители заряженных частиц, как правило, циклотроны и радионуклидные генераторы (как вторичный источник). В мировом объеме производства радионуклидов громадная его часть --на ускорителях заряженных частиц, которые в большинстве своем являются циклотронами различных типов и уровней. Этот факт обычно связывают с большим количеством исследовательских их доступностью в самые первые годы развития ядерной медицины на рубеже 40-х и 50-х годов, а также с дешевизной производства на них большинства радионуклидов. К середине 80-годов ежегодная наработка радионуклидов только для ядерной медицины на реакторах всего мира достигла в стоимостном выражении 500 млн. долларов.
Однако за последние два десятилетия обнаруживается существенный рост в использовании ускорителей заряженных частиц для указанных целей, который обьясняется более приемлемыми ядерно-физическими характеристиками получаемых с их помощью нейтронодефицитных радионуклидо.[4]
Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.
Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения - как правило, не ранее чем через одно - два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению появляются лишь в следующем или последующем поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению. За единицу активности (радиоактивности) радиоактивного вещества в Международной системе СИ принята скорость радиоактивного распада, равная 1 распаду в секунду, которая получила название беккерель -- Бк (в английской версии Bq). Устаревшая, но по-прежнему используемая единица активности кюри -- Ки (в английской версии Ci) -- это активность препарата, эквивалентная активности 1 г металлического радия-226 и равная 3,7х1010 распадов в секунду, т.е. 3,7х1010 Бк.
Радиоактивный распад -- это превращение ядра атома радиоактивного элемента, которое сопровождается выделением продуктов такого превращения. Например, электронный захват представляет собой поглощение электрона ядром с выделением г-кванта, и такой тип "радиоактивного распада" более точно следует называть "ядерным превращением". Впрочем, оба термина используются в литературе на равных, несмотря на предпочтительность "ядерного превращения".Природная радиоактивность обусловлена радиоактивными изотопами естественного происхождения, присутствующими во всех оболочках земли -- литосфере, гидросфере, атмосфере и биосфере. Сохранившиеся на нашей планете радиоактивные элементы условно могут быть разделены на три группы:
1. радиоактивные изотопы, входящие в состав радиоактивных семейств, родоначальниками которых являются уран (U238), торий (Th232) и актиний-уран (AcU235);
2. генетически не связанные с ними радиоактивные элементы: калий (К40), кальций (Ca48), рубидий (Rb87) и др;
3. радиоактивные изотопы, непрерывно возникающие на земле в результате ядерных реакций, под воздействием космических лучей. Наиболее важные из них -- углерод (С14) и тритий (Н3).Естественные радиоактивные вещества широко распространены во внешней среде. Это в основном долгоживущие изотопы с периодом полураспада 108-1016 лет. В процессе распада они испускают - и -частицы, а также -лучи.Радиоактивные изотопы имеют широкий спектр применения.Метод меченых атомов для исследования биологических процессов в организме основан на том, что химические свойства всех изотопов одинаковы, а обнаружить радиоактивный (меченый) атом очень легко. Метод применяется в биологии, физиологии, медицине. Радиоактивные изотопы -- источники излучений. Эти изотопы применяются в медицине для постановки диагноза и лечения злокачественных опухолей. Радиоактивные изотопы применяются в сельском хозяйстве для селекции.
2. Радионуклидная диагностика

Радионуклидная диагностика - один из видов лучевой диагностики, основанный на внешней радиометрии излучения, исходящего из органов и тканей после введения радиофармацевтических препаратов непосредственно в организм пациента. Это метод функциональной визуализации, позволяющий качественно и количественно оценить наличие функционирующей ткани в исследуемом органе. Особенности технологий ядерной медицины - распознавание патологического процесса на молекулярном уровне, в ряде случаев на доклинической стадии. Технологии радионуклидной диагностики являются функциональными и физиологичными (т.е. не влияющими на течение нормального или патологического процесса жизнедеятельности органа и системы, который они отражают).
Радионуклидная диагностика основана на дистанционной радиометрии и использовании радиофармпрепаратов (РПФ), отличительная черта которых - способность накапливаться и распределяться в исследуемом органе в зависимости от наличия функционирующей ткани и отражать динамику протекающих в органе процессов. Когда радиоактивный изотоп вводят в организм человека, появляется возможность с помощью счетчика измерить создаваемое излучение и определить локализацию, количество и характер распределения введенного изотопа. Подобная информация неоценима для диагностики ряда медицинских нарушений. Благодаря высокой чувствительности счетчиков, определяющих излучение, в организм человека вводят очень небольшое количество радиоактивных веществ. Поэтому подобные обследования проводят при довольно низких дозах облучения тканей, что одновременно означает необходимость введения очень небольшой массы радиопрепарата. Во многих происходящих в организме процессах, особенно включающих взимодействие с гормонами или витаминами, нормальное равновесие веществ легко нарушить. Радиоактивное же обследование редко когда требует введения более чем 1 мкг (одна миллионная часть грамма) вещества, путь которого в организме необходимо проследить, что не приведет к нарушению указанного выше нормального равновесия. Это ценное качество радиоизотопного метода, которое используют при проведении медицинских и биологических исследований. Радионуклидная диагностика - это метод диагностики основанный на введении пациенту радиофармакологического препарата (РФП), обладающего следующими свойствами: 1.тропностью (сродством) к исследуемому органу или ткани (например, участие в метаболизме исследуемой ткани) 2. наличие радиоактивной метки, позволяющей определить динамику и количество накопившегося РФП с помощью внешнего датчика.Радиофармацевтическим препаратом называется химическое соединение, предназначенное для введения человеку с диагностической или лечебной целью и содержащее в своей молекуле определенный радиоактивный нуклид. Он вводится в организм вместе с фармацептическими препаратами, при помощи инъекции, заглатывания или ингаляции. Это не больно и безопасно, а эффект феноменален: слабое радиоизлучение, идущее из организма, дает точнейшую информацию о различных органах и возможных патологиях; получение подобной информации другими способами требует дорогостоящих исследований или хирургического вмешательства, либо вовсе невозможно. Уникальность метода состоит в том, что радиоизлучение идет изнутри органа, а не транслируется извне, как при использовании рентгена, компьютерной томографии или отображения магнитного резонанса (излучателем является не внешнее устройство, а т.н. радиоизотоп - радиоактивная часть вводимого в организм препарата) . Это позволяет исследовать интересующий орган на более высоком уровне: полученная картина отображает не только анатомические аномалии, как в вышеупомянутых случаях, но и биологические процессы.Ядерная медицина использует гамма-лучи, подобные х-излучению, используемому в рентгеноскопии. Слабое излучение, идущее из исследуемого органа, фиксируется специальной камерой, которая устанавливается в нескольких сантиметрах от тела пациента. Это занимает несколько минут, камеры работают бесшумно, не беспокоя обследуемого, а получаемая информация может оказаться незаменимой в целом ряде случаев: при исследовании работы сердца и кровообращения в головном мозге, в исследованиях клеток головного мозга, адекватности работы почек, легких и желудка, усвояемости витаминов и исследования плотности костной ткани. Ядерная медицина позволяет обнаружить мельчайшие костные переломы до того, как они станут заметны при помощи рентгена. Она также может идентифицировать рак и возможность его излечимости, локализовать эпилептические схватки, болезнь Паркинсона и Альцхеймера, последствия сердечного приступа и состояние трансплантированных органов.В конце 20-х годов ХХ века впервые были использованы меченые соединения в клинической практике. Тогда Блюмгарт и Вейз в 1927 г. опубликовали работы по использованию газа радона для определения гемодинамики у больных с сердечной недостаточностью. Появление в распоряжении у медиков радиоактивно меченных атомов открыло целую область, известную как радиоизотопная медицина и уже вступившую в качестве новой специальности в свои законные права.
Новая область медицины основана на использовании радиоактивных изотопов. Химические свойства изотопа идентичны с таковыми обычного соответствующего элемента. Имея слишком много или слишком мало нейтронов в ядре, некоторые из изотопов являются радиоактивными, т. е. испускают излучение, которое можно обнаружить с помощью чувствительного прибора, например счетчика Гейгера или сцинтилляционного счетчика. Излучение может состоять из гамма- или альфа -лучей, или из лучей обоих видов. Существуют определенные изотопы, которые используют в радиоизотопной медицине. Выбор радиоактивного нуклида осуществляется со следующими требованиями: низкая радиотоксичность, приемлемый период полураспада (от нескольких минут до нескольких часов), удобное для регистрации гамма - излучение. Радиоактивный нуклид, который тем или иным способом был введен в структуру препарата, выполняет роль его маркера. Излучения радионуклида становятся переносчиками координированной информации от исследуемого пациента к информационно-измерительному комплексу.
Физическая характеристика излучений радионуклида решающим образом предопределяет объем и глубину залегания подлежащего исследованию участка тела. В этом случае радиоактивное излучение, исходящее из организма пациента, в неявном виде несет сведения о функциональном состоянии различных физиологических механизмов и структурно-топографических особенностях различных органов и систем. Наблюдая за особенностями распределения радиоактивного препарата во времени (динамику распределения), либо в выбранном объеме тела (органа), или в целом организме, мы получаем возможность судить о функциональном состоянии органов и систем.
Изучая же характер пространственного распределения, мы приобретаем сведения о стуктурно-топографических особенностях той или иной части тела, органа или системы. Поэтому по своим функциональным свойствам РПФ могут быть разделены на физиологически тропные и инертные. Из чего следует, что первые являются оптимальным средством для проведения структурно - топографических исследований, каждое из которых проводится, начиная с момента установления более или менее стабильного распределения РФП в исследуемом органе или системе. Вторые, которые часто называют индикаторами ” транзита ”, используются главным образом для исследования методами гамма - хронографии.
При этом высокая удельная активность препарата и приемлемая энергия гамма - квантов, испускаемых радионуклидом - меткой, гарантируют хорошие пространственное разрешение, а быстрый распад радионуклидов позволяет проводить серию динамических наблюдений через минимальный интервал времени при отсутствии органного фона от предшествовавшего радионуклидного обследования. Хорошей иллюстрацией использования радиоактивных веществ в медицине является закономерность распределения радиоактивного йода при различных заболеваниях щитовидной железы, проведенные в 1939 г. Гамильтоном.
Известно, что щитовидная железа непременно захватывает весь йод, попадающий в организм, независимо от пути проникновения. Пациенту было предложено принять внутрь раствор 131I, радиоактивность которого была предварительно сосчитана счетчиком Гейгера и принята за 100%. Тем же счетчиком проводились измерения радиоактивности в области щитовидной железы через 2 часа, через 4 часа и через сутки после введения радиоактивного йода.
Таким образом, была эмпирически определена норма накопления препарата в щитовидной железе. Если накопление произошло быстрее, то имеем дело с гиперфункцией щитовидной железы, а если накопление шло медленнее, чем в норме, то с гипофункцией. Этот пример использования радиоактивного индикатора в клинических целях наглядно демонстрирует сущность и возможности радионуклидной диагностики.
Несмотря на использование более совершенных регистраторов излучения, современных радиофармпрепаратов и радиоактивных меток, принцип регистрации и оценки накопления индикатора именно в функционирующей ткани остается неизменным. Радиобиологи утверждают, что малые дозы ионизирующего излучения увеличивают среднюю продолжительность жизни в популяции и стимулируют умственные способности. Люди, работающие в области применения радионуклидов, отличаются неординарностью и быстротой мышления. Поэтому радионуклидная диагностика всегда находилась на передовых рубежах медицинской науки и техники.
Важным этапом развития радионуклидной диагностики стало техническое переоснащение регистрирующей аппаратуры, замена счетчиков Гейгера, характеризующимися длительным временем ионизации и деионизации (т.е. «мертвым» временем), на сцинтилляционные датчики.
Сцинтилляционный датчик представляет собой кристалл соли галогена и щелочного металла (чаще соль KI), активированного 3-х валентным таллием. В середине 50-х годов, с развитием атомной промышленности, появилась возможность производить в достаточных количествах различные радионуклиды, что привело к расширению ассортимента органотропных радиофармпрепаратов. В это же время совершенствовались и радиометрические приборы. Так появилась возможность ввести радиоактивную метку в гиппуровую кислоту, которая традиционно использовалась для определения функционального состояния канальцевого аппарата почек. Для определения функции почек гиппуровую кислоту вводили пациенту и наблюдали динамику ее появление в моче. При введении меченого гиппурана и внешней радиометрии раздельно каждой из почек к датчику двухканального радиометра присоединяли самописец, который регистрировал изменение радиоактивности во времени. Получали две кривые, которые представляли собой суммарный график накопления и выведения препарата каждой из почек - ренограммы. Изменение формы и высоты кривых характеризовали ту или иную патологию.
Описанная методика представляет собой классический случай динамического, так называемого функционального, исследования. Следующим этапом в развитии радионуклидной визуализации стало создание сканера. Было предложено измерять радиоактивность, перемещая датчик радиометра по прямой линии вдоль исследуемого органа, останавливаясь на определенное время счета через равные значения расстояния, при этом получался линейный срез. Далее датчик перемещался на одно значение расстояния перпендикулярно предыдущему передвижению и снова двигался параллельно первой прямой. Подобное движение повторялось последовательно до получения полного изображения проекции органа. Такая совокупность линейных срезов или сканов получила название сканограммы, а метод - сканирование. Создание новых приборов стимулировало создание новых радиофармпрепаратов. Появилась возможность для визуализации на сканере различных органов: щитовидной железы с 131I, печени c 197Au, почек c 169Yb, сердца c 201Tl, легких c 133Xe, поджелудочной железы с 75Se, и т.д. При отсутствии ультразвуковой диагностики и компьютерной томографии радионуклидное сканирование являлось единственным методом визуализации очагового поражения органов и тканей.
Большинство из перечисленных радиофармпрепаратов имело повышенную радиотоксичность, в основном из-за большего периода полураспада (max у 75Se - 121 день). Оптимальным для проведения исследования являлся бы препарат с наименьшим периодом полураспада, идеально несколько часов или минут. Такие препараты практически не могли быть использованы на практике, т.к. для того, чтобы доставить необходимую для введения дозу от производителя до пользователя, приходится вывозить дозы препарата превышающие предельно допустимые уровни во много раз. Эта, на первый взгляд, не имеющая решения проблема была снята с помощью использования генераторов радиоактивных изотопов. Принцип работы генератора основывается на том, что распад некоторых нестабильных элементов заканчивается не образованием стабильного изотопа, а созданием дочернего, нового нестабильного элемента.
В медицинской диагностической практике используются чаще всего две генераторные пары 113Sn - 113mIn и 99Mo - 99mTc. В Росси чаще работают с радиоактивным изотопом 99mTc, имеющим идеальный для сцинтиграфии моноэнергетический спектр гамма излучения 140 кэВ и период полураспада - 6 часов. Для его получения используется 99Mo - период полураспада ~ 7 суток. Технологически 99MoО42- прочно соединяется с сорбентом - окисью алюминия и опускается в стеклянную колонку, заполненную стерильным физиологическим раствором. При этом оксид молибдена (99MoО42-) остается жестко присоединенным к сорбенту, и в результате ?- - распада превращается в водорастворимый оксид технеция (99mTcО42-), который оказывается в растворе в виде пертехнетата натрия - Na+(99mTcO4)-. В медицинское учреждение привозят генератор с находящимся внутри защитного контейнера молибденом 99MoО42-, из которого в течение недели и более, непосредственно на рабочем месте, можно получать соединения технеция 99mTc с периодом полураспада всего 6 часов.
Таким образом, создаются условия для минимальной лучевой нагрузки на пациента. Период полураспада радиоактивной метки всего 6 часов, т.е., если бы препарат вообще не выводился из организма, то через 6 часов его осталась половина, через 12 часов ?, через 18 - 1/8 и через сутки 1/16 часть от введенной дозы - значения близкие к естественному фону.
С учетом биологического выведения препарата (в случае с исследованием почек биологическое полувыведение - 15 минут) лучевые нагрузки на пациента невелики и в большинстве исследований не превышают облучение при флюорографии. [7]Технеций является радионуклидной меткой, общей для различных радиофармпрепаратов. Многие фирмы, в том числе и в России, производят леофилизированные химические наборы для приготовления технециевых радиофармпрепаратов. Большинство из них требует только добавления перхенетата, который после растворения леофилизата жестко соединяется с химическим веществом, тропным для того или иного органа.
Таблица 1
Коллективная эффективная доза и возможный риск отдаленных последствий.
Вид обследования
Доза, чел-зв./год.
Возможное число дополнительных смертей, случай/год.
Рентгенография
1,03*105
1700
Рентгеноскопия
2,12*105
3500
Флюрография
0,68*105
1120
РФП
0,09*105
132
Всего
3,92*105
6452
В конце 60-х, начале 70-х годов бурное развитие технологии создания крупных кристаллов, химии полимеров и радиоэлектроники позволили создать качественно новый вид радиометрического прибора - гамма-камеру (см. приложения 1). Проблема заключалась в том, что для ее создания требовался кристалл KI большего диаметра, с тщательно отполированными параллельными стенками, полностью изолированный от воздушной среды. Соль KI является исключительно гигроскопичной, при контакте с воздухом впитывает находящиеся там пары воды, и теряет свои оптические свойства.
Сложность заключалась в создании и напылении на кристалл прозрачной полимерной пленки, коэффициент преломления которой был бы равен коэффициенту преломления кристалла. Поверх кристалла на специальной смазке (для полного оптического контакта) устанавливались фотоэлектронные умножители для регистрации сцинтилляционных вспышек. При попадании гамма-частицы кристалл засвечивается целиком, но с разной интенсивностью, наибольшей в месте попадания частицы. Несложная плечевая электронная схема опроса ФЭУ позволяет определить координаты попадания частицы и вывести их на дисплей прибора. Изображения полученные на гамма-камере получили название сцинтиграмм, а метод - сцинтиграфии.
На первых гамма-камерах регистрация количества частиц происходила за счет длительного «запоминающего» свечения люминофора дисплея. С развитием компьютерной техники все гамма-камеры снабжались компьютерами, где сразу же были созданы программы обработки изображения. Бурное развитие компьютерной техники в 80-е годы привело к созданию новых систем обработки сцинтиграмм, в частности к созданию эмиссионного компьютерного томографа.
Эмиссионный компьютерный томограф представляет собой гамма-камеру, детектор которой имеет возможность вращаться вокруг стола с пациентом, делая несколько кадров под различными углами наклона.
Компьютерная программа реконструирует срезы в любом направлении и любой толщины и дает возможность получить объемное изображение исследуемого органа.
Новейшим достижением развития радионуклидной диагностики стало создание позитронного эмиссионного томографа (ПЭТ). Регистрирующее устройство - детекторы позитронного эмиссионного томографа - по принципу действия мало, чем отличается от регистрирующего устройства обычной 2-х детекторной гамма-камеры. Сам же позитрон сразу же после излучения аннигилирует с электроном, испуская при этом два фотона, двигающихся строго в противоположных направлениях. Регистрируются только те частицы, которые одновременно попали в идентичные координаты обоих детекторов. Это позволяет значительно увеличить разрешающую способность прибора при введении меньших доз радиофармпрепарата., Небольшой период полураспада не позволяет перевозить позитронные радиофармпрепараты на большие расстояния. На позитронном эмиссионном томографе можно исследовать сложные процессы метаболизма, диагностировать новообразования и т.д. (см. приложение 2).
3. Лечение с помощью радиоактивных элементов

Помимо диагностики, ядерная медицина выполняет лечебные функции. Она эффективно используется при лечении некоторых видов рака (лимфомы), раковых болей в костях и базедовой болезни (с использованием радиоактивного йодина). Количество радиоактивного материала, используемого в ядерной медицине, очень мало, поэтому риск облучения не превышает риска от обычной рентгеноскопии. Не следует забывать, что организм человека непрерывно подвергается радиоизлучению от естественных и искусственных источников: воздуха, воды, почвы, скал. Радиоактивны даже атомы человеческого тела, а также многие промышленные товары (например, детекторы дыма, цветные телевизоры, светящиеся знаки "выход" и люминесцентные диски наручных часов). Способ и место применения радиоактивных материалов в ядерной медицине строго нормированы, для диагностического исследования в среднем используется радиоактивная доза в 300 микроБЭР. Это равняется среднему уровню фоновой радиации для жителей США и других развитых стран.
Один из самых ранних случаев ядерной медицины относится к 1946г., когда для исследования щитовидной железы в составе т.н. "атомного коктейля" был впервые применен радиоактивный йод. Радиация уничтожила раковые клетки! Широко распространенное клиническое использование ядерной медицины началось в начале 1950-ых. Первый сканер для ядерной диагностики был введен Бенедиктом Кассеном в 1951 г. В дополнение к лечению рака щитовидной железы, радиоактивный йод, в значительно меньших дозах, использовался чтобы исследовать функционирование щитовидной железы и диагностировать связанные с ней заболевания. По мере углубления научных знаний об основных биохимических процессах развивались методы использования и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.