На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 12.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


27

РЕФЕРАТ

В работе рассматриваются методы нахождения минимума функции одной переменной и функции многих переменных.

Пояснительная записка к курсовой работе состоит из двух основных частей: теоретической и практической.

В теоретической части рассматривается поиск минимума функции одной переменной методом золотого сечения, поиск минимума функции многих переменных - методами покоординатного спуска, наискорейшего спуска и случайного поиска.

Практическая часть содержит разработку программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска, реализованную на языке Pascal.

Объем пояснительной записки: 1

Количество рисунков: 4

Количество используемых источников: 3

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Минимум функции одного переменного

1.1 Постановка задачи
1.2 Золотое сечение
2. Минимум функции многих переменных
2.1 Рельеф функции
2.2 Спуск по координатам
2.3 Наискорейший спуск
2.4 Случайный поиск
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Приложение 1
Приложение 2
ВВЕДЕНИЕ
В работе рассмотрены способы нахождения такого значения аргумента, которое минимизирует некоторую зависящую от него скалярную величину. В параграфе 1 изложена задача о минимуме функции одного переменного, лежащая в основе всех более сложных задач. В параграфе 2 рассмотрена задача о минимуме функции многих переменных в неограниченной области.
1. Минимум функции одного переменного
1.1 Постановка задачи.
Пусть имеется некоторое множество , состоящее из элементов , принадлежащих какому-нибудь метрическому пространству, и на нем определена скалярная функция . Говорят, что имеет локальный минимум на элементе , если существует некоторая конечная -окрестность этого элемента, в которой выполняется
. (1)
У функции может быть много локальных минимумов. Если же выполняется
, (2)
то говорят о достижении функцией абсолютного минимума на данном множестве .
Потребуем, чтобы функция была непрерывной или, по крайней мере, кусочно-непрерывной, а множество было компактно Множество компактно, если из каждого бесконечного и ограниченного его подмножества можно выделить сходящуюся последовательность. и замкнуто Множество замкнуто, если предел любой сходящейся последовательности его элементов принадлежит этому множеству. (в частности, если само является пространством, то это пространство должно быть банаховым). Если эти требования не соблюдены, то вряд ли возможно построить разумный алгоритм нахождения решения. Например, если не является кусочно-непрерывной, то единственным способом решения задачи является перебор всех элементов , на которых задана функция; этот способ нельзя считать приемлемым. Чем более жестким требованиям удовлетворяет (таким, как существование непрерывных производных различного порядка), тем легче построить хорошие численные алгоритмы.
Перечислим наиболее важные примеры множеств, на которых приходится решать задачу нахождения минимума. Если множество является числовой осью, то (1) и (2) есть задача на минимум функции одного вещественного переменного. Если есть -мерное векторное пространство, то мы имеем дело с задачей на минимум функции переменных. Если есть пространство функций , то (1) называют задачей на минимум функционала.
Для нахождения абсолютного минимума есть только один способ: найти все локальные минимумы, сравнить их и выбрать наименьшее значение. Поэтому задача (2) сводится к задаче (1), и мы будем в основном заниматься задачей поиска локальных минимумов.
Известно, что решение задачи (1) удовлетворяет уравнению
. (3)
Если множество есть числовая ось, то написанная здесь производная является обычной производной, и тогда уравнение (3) есть просто одно (нелинейное) уравнение с одним неизвестным. Для -мерного векторного пространства соотношение (3) оказывается системой нелинейных уравнений . Для пространства функций уравнение (3) является дифференциальным или интегро-дифференциальным. В принципе такие уравнения можно решать итерационными методами. Однако эти уравнения нередко имеют сложный вид, так что итерационные методы их решения могут очень плохо сходиться или вообще не сходиться. Поэтому в данной главе мы рассмотрим численные методы, применимые непосредственно к задаче (1), без приведения ее к форме (3).
Пусть является некоторым множеством, принадлежащим какому-то пространству. Тогда (1) называют задачей на минимум в ограниченной области. В частности, если множество выделено из пространства с помощью ограничивающих условий типа равенств, то задачу (1) называют задачей на условный экстремум; такие задачи методом неопределенных множителей Лагранжа часто можно свести к задачам на безусловный экстремум. Однако при численном решении обычно удобнее иметь дело непосредственно с исходной задачей (1), хотя при ее решении в ограниченной области возникают свои трудности.
Функция может иметь на множестве более одного локального минимума. В конкретных прикладных задачах далеко не всегда удается заранее исследовать свойства функции. Поэтому желательно, чтобы численный алгоритм позволял определить число минимумов и их расположение и аккуратно найти абсолютный минимум.
Задачу называют детерминированной, если погрешностью вычисления (или экспериментального определения) функции можно пренебречь. В противном случае задачу называют стохастической. Мы будем рассматривать в основном детерминированные задачи. Для решения стохастических задач есть специальные методы, но они очень медленные, и применять их к детерминированным задачам невыгодно.
1.2 Золотое сечение

В этом параграфе мы рассмотрим задачу нахождения минимума функции одной действительной переменной. Эта одномерная задача нередко возникает в практических приложениях. Кроме того, большинство методов решения многомерных задач сводится к поиску одномерного минимума.
Сейчас мы рассмотрим метод золотого сечения, применимый к недифференцируемым функциям. Будем считать, что задана и кусочно-непрерывна на отрезке , и имеет на этом отрезке (включая его концы) только один локальный минимум. Построим итерационный процесс, сходящийся к этому минимуму.
Вычислим функцию на концах отрезка, а также в двух внутренних точках , сравним все четыре значения функции между собой и выберем среди них наименьшее. Пусть наименьшим оказалось . Очевидно, минимум расположен в одном из прилегающих к нему отрезков (см. рис. 1). Поэтому отрезок можно отбросить и оставить отрезок . Первый шаг процесса сделан.
a x1 x3 x2 b
Рис. 1
На отрезке снова надо выбрать две внутренние точки, вычислить в них и на концах отрезка значения функции, и сделать следующий шаг процесса. Но на предыдущем шаге вычислений мы уже нашли на концах нового отрезка и в одной его внутренней точке . Поэтому достаточно выбрать внутри еще одну точку , определить в ней значение функции и провести необходимые сравнения. Это вчетверо уменьшает объем вычислений на одном шаге процесса.
Как выгодно размещать точки? Всякий раз мы делим оставшийся отрезок на три части (причем одна из точек деления уже определена предыдущими вычислениями) и затем отбрасываем один из крайних отрезков. Очевидно, надо, чтобы следующий отрезок был поделен подобно предыдущему. Для этого должны выполняться соотношения
.
Решение этих уравнений дает
. (4)
После проведения очередного вычисления отрезок сокращается в раза; после вычислений функции он составляет долю первоначальной величины (три первых вычисления в точках еще не сокращают отрезок). Следовательно, при длина оставшегося отрезка стремится к нулю как геометрическая прогрессия со знаменателем , т. е. метод золотого сечения всегда сходится, причем линейно.
Запишем алгоритм вычисления. Для единообразия записи обозначим
,
а поочередно вводимые внутренние точки будут На первом шаге полагаем согласно (4)
. (5)
После сравнения может быть отброшена точка с любым номером, так что на следующих шагах оставшиеся точки будут перенумерованы беспорядочно. Пусть на данном отрезке есть четыре точки из которых какие-то две являются концами отрезка. Выберем ту точку, в которой функция принимает наименьшее значение; пусть это оказалась :
. (6)
Затем отбрасываем ту точку, которая более всего удалена Это верно не при всяких делениях отрезка, но для деления в соответствии (4) это справедливо. от ; пусть этой точкой оказалась :
. (7)
Определим порядок расположения оставшихся трех точек на числовой оси; пусть, для определенности,
. (8)
Тогда новую внутреннюю точку введем таким соотношением См. предыдущую сноску.:
, (9)
и присвоим ей очередной номер. Минимум находится где-то внутри последнего отрезка, . Поэтому итерации прекращаем, когда длина этого отрезка станет меньше заданной погрешности :
. (10)
Метод золотого сечения является наиболее экономичным аналогом метода дихотомии применительно к задачам на минимум. Он применим даже к недифференцируемым функциям и всегда сходится; сходимость его линейна. Если на отрезке функция имеет несколько локальных минимумов, то процесс сойдется к одному из них (но не обязательно к наименьшему).
Этот метод нередко применяют в технических или экономических задачах оптимизации, когда минимизируемая функция недифференцируема, а каждое вычисление функции - это дорогой эксперимент.
Метод золотого сечения рассчитан на детерминированные задачи. В стохастических задачах из-за ошибок эксперимента можно неправильно определить соотношение между значениями функций в точках; тогда дальнейшие итерации пойдут по ложному пути. Поэтому если различия функций в выбранных точках стали того же порядка, что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего , то небольшая погрешность функции приводит к появлению довольно большой области неопределенности .
2. Минимум функции многих переменных

2.1 Рельеф функции

Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных . Она описывает некоторую поверхность в трехмерном пространстве с координатами . Задача означает поиск низшей точки этой поверхности.
Изобразим рельеф этой поверхности линиями уровня. Проведем равноотстоящие плоскости и найдем линии их пересечения с поверхностью ; проекции этих линий на плоскость называют линиями уровня. Направление убывания функции будем указывать штрихами, рисуемыми около линий уровня. Полученная картина напоминает топографическое изображение рельефа горизонталями. По виду линий уровня условно выделим три типа рельефа: котловинный, овражный и неупорядоченный.
а) б)
в)
Рис. 2 г)
При котловинном рельефе линии уровня похожи на эллипсы (рис. 1, а). В малой окрестности невырожденного минимума рельеф функции котловинный. В самом деле, точка минимума гладкой функции определяется необходимыми условиями
, (11)
и разложение функции по формуле Тейлора вблизи минимума имеет вид
, (12)
причем квадратичная форма (12) - положительно определенная Квадратичная форма называется положительно определенной, если при любых (за исключением обращающихся одновременно в нуль) она положительна., иначе эта точка не была бы невырожденным минимумом. А линии уровня знакоопределенной квадратичной формы - это эллипсы.
Случай, когда все вторые производные равны в этой точке нулю и минимум определяется более высокими производными, по существу ничего нового не дает, и мы не будем его специально рассматривать (линии уровня вместо эллипсов будут похожими на них кривыми четвертого порядка).
Отметим, что условию (11) удовлетворяют также точки максимумов и седловые точки. Но в точках максимумов квадратичная форма (12) отрицательно определенная, а в седловинах она знакопеременна.
Вблизи минимума функция мало меняется при заметных изменениях переменных. Поэтому даже если мы не очень точно определим те значения переменных, которые должны минимизировать функцию, то само значение функции при этом обычно будет мало отличаться от минимального.
Рассмотрим овражный тип рельефа. Если линии уровня кусочно-гладкие, то выделим на каждой из них точку излома. Геометрическое место точек излома назовем истинным оврагом, если угол направлен в сторону возрастания функции, и гребнем - если в сторону убывания (рис. 2, б). Чаще линии уровня всюду гладкие, но на них имеются участки с большой кривизной; геометрические места точек с наибольшей кривизной назовем разрешимыми оврагами или гребнями (рис. 2, в). Например, рельеф функции
, (13)
изображенный на этом рисунке, имеет ярко выраженный извилистый разрешимый овраг, «дно» которого - синусоида, а низшая точка - начало координат.
В физических задачах овражный рельеф указывает на то, что вычислитель не учел какую-то закономерность, имеющую вид связи между переменными. Обнаружение и явный учет этой закономерности облегчает решение математической задачи. Так, если в примере (13) ввести новые переменные , то рельеф становится котловинным.
Неупорядоченный тип рельефа (рис. 2, г) характеризуется наличием многих максимумов, минимумов и седловин. Примером может служить функция
, (14)
рельеф которой изображен на этом рисунке; она имеет минимумы в точках с координатами и максимумы в точках, сдвинутых относительно минимумов на по каждой координате.
Все эффективные методы поиска минимума сводятся к построению траекторий, вдоль которых функция убывает; разные методы отличаются способами построения таких траекторий. Метод, приспособленный к одному типу рельефа, может оказаться плохим на рельефе другого типа.
2.2 Спуск по координатам

Казалось бы, для нахождения минимума достаточно решить систему уравнений типа (11) методом линеаризации или простых итераций и отбросить те решения, которые являются седловинами или максимумами. Однако в реальных задачах минимизации эти методы обычно сходятся в настолько малой окрестности минимума, что выбрать подходящее нулевое приближение далеко не всегда удается. Проще и эффективнее провести спуск по координатам. Изложим этот метод на примере функции трех переменных .
Выберем нулевое приближение . Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; обозначим ее через . Найдем минимум функции одной переменной и обозначим его через . Мы сделали шаг из точки в точку по направлению, параллельному оси ; на этом шаге значение функции уменьшилось.
Затем из новой точки сделаем спуск по направлению, параллельному оси , т. е. рассмотрим , найдем ее минимум и обозначим его через . Второй шаг приводит нас в точку . Из этой точки делаем третий шаг - спуск параллельно оси и находим минимум функции . Приход в точку завершает цикл спусков.
Будем повторять циклы. На каждом спуске функция не возрастает, и при этом значения функции ограничены снизу ее значением в минимуме . Следовательно, итерации сходятся к некоторому пределу . Будет ли здесь иметь место равенство, т. е. сойдутся ли спус и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.