На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Классическая последовательность чисел Фибоначчи, определение основных понятий, схематическое изображение этой последовательности, ее свойства. Упорядочивание, вычисление элементов последовательности. Некоторые зависимости между мнимыми тройками.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 07.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


17
Государственное учреждение образования
Гимназия № 8 г. Витебска
МНОГОМЕРНЫЕ
последовательности Фибоначчи
Витебск, 2009
Содержание

Введение, основные понятия
1. Свойства последовательности
2. Упорядочивание, вычисление элементов последовательности
3. Некоторые зависимости между мнимыми тройками
4. Практическое применение, дополнения
4.1 Решение задачи «Математики играют»
4.2 Фигуры в декартовых системах координат
Заключительная часть
Направления для исследований

Литература

Введение, основные понятия

Широко известна классическая последовательность чисел Фибоначчи, в которой первые два элемента равны единице (F1=F2=1), а каждый последующий равен сумме двух предыдущих. (Fi+2=Fi+1+Fi.) В данной работе представлена последовательность, схожая по построению с последовательностью Фибоначчи, но состоящая не из чисел, а из троек чисел (Далее будем называть её трёхмерной последовательностью Фибоначчи). Цель данной работы - найти формулы зависимости между её членами, рекуррентные соотношения, общие формулы. Также в работе рассмотрены возможные применения данной последовательности: при решении задачи из турнира юных математиков (г. Минск, 2007 г.), и кроме этого, были рассмотрены фигуры в декартовых системах координат, чьи вершины имеют координаты, равные соответствующим компонентам троек.

Дадим определение основным понятиям.

· Аддитивная тройка - тройка целых чисел (a, b, c), где одно из чисел равно сумме двух других. Натуральной аддитивной тройкой назовём ту, в которой все числа натуральны, мнимой аддитивной тройкой назовём ту, в которой хотя бы одно число неположительное.

· Производная аддитивной тройки первым и вторым способом. Занумеруем переменные циклически. Пусть в некоторый момент i-1, i, i+1 - номера компонент тройки, полученные циклической перестановкой номеров 1, 2, 3, причём такой, что число с номером i равно сумме двух других. Тогда её производная «первым способом» - это тройка чисел, где числа с номерами i, i-1 остаются неизменными, а число с номером i+1 заменяется на сумму двух других. Аналогично, производная вторым способом - это та тройка, где числа с номерами i, i+1 остаются неизменными, а число с номером i-1 заменяется на сумму двух других.

· Производную первым способом от аддитивной тройки T обозначим f(T), а производную вторым способом - g(T).

Например, производные от тройки (1, 2, 3) первым и вторым способом соответственно - это тройки (5, 2, 3) и (1, 4, 3). При этом тройки вида (p+q,p,q) назовём аддитивными тройками 1 рода, тройки вида (p,p+q,q) - аддитивными тройками 2 рода, тройки вида (p,q,p+q) - соответственно аддитивными тройками 3 рода.
· Простейшие тройки - это аддитивные тройки (2,1,1), (1,2,1) и (1,1,2)
· Множество на k-том ходу - это некоторое множество, состоящее из нескольких аддитивных троек. Правила построения этих множеств будут описаны ниже. Каждая аддитивная тройка является либо простейшей тройкой, либо производной от некоторой другой аддитивной тройки.
1. Свойства последовательности

Построим последовательность, и назовём её трёхмерной последовательностью Фибоначчи. Эта последовательность будет состоять из множеств М1, М2, … и так далее. Множество М1 состоит всего из одной аддитивной тройки (2,1,1). Далее строим последовательность следующим образом: Если аддитивная тройка Т содержится в Мi, то её производная первым способом содержится в Мi+1, а производная вторым способом содержится в Мi+2. Кроме этого, множество М2 дополняется простейшей тройкой (1,2,1), а множество М3 - соответственно простейшей тройкой (1,1,2).
Понятно, что при этом аддитивные тройки 1 рода лежат в множествах М1, М4, М7, …, М3k+1, …, аддитивные тройки 2 рода соответственно лежат в множествах М2, М5, М8, …, М3k+2, …, и, наконец тройки 3 рода - соответственно в множествах М3, М6, М9, …, М3k, …
Ниже представлено схематическое изображение этой последовательности, в виде таблицы:
Мн-во
Тройки
|Mi|
M1
(2,1,1)
1
M2
(2, 3, 1)
(1, 2, 1)
2
M3
(2, 3, 5)
(2, 1, 3)
(1, 2, 3)
(1, 1, 2)
4
M4
(8,3,5)
(4,3,1)
(4,1,3)
(3,2,1)
(5,2,3)
(3,1,2)
6
M5
(8,13,5)
(4,5,1)
(4,7,3)
(5,8,3)
(3,5,2)
10
(2,7,5)
(2,5,3)
(3,4,1)
(1,4,3)
(1,3,2)


16
Заметим, что начиная с n=3, количество элементов во множестве Mi равняется i-тому числу из последовательности Фибоначчи, умноженному на 2. (|Mi|=2Fi).
Действительно, каждое множество состоит из производных троек предыдущего множества, и предыдущего за ним. Поэтому его мощность равняется сумме мощностей двух предыдущих множеств. Для n3 |Mi|=|Mi-1|+|Mi-2| (Под последовательностью Фибоначчи здесь понимается последовательность Fn, где F1=F2=1, Fi+2=Fi+1+Fi, i>1)
Номер той компоненты тройки, которая равняется сумме двух других, соответствует остатку при делении числа q на 3, где q - номер множества, в котором содержится данная тройка.

Свойства трёхмерной последовательности Фибоначчи

Докажем следующие две теоремы:

1. Все числа аддитивной тройки попарно взаимно просты.

2. Любая аддитивная тройка со взаимно простыми компонентами входит в трёхмерную последовательность Фибоначчи, причём ровно один раз.

Доказательство (Теорема 1). Посчитаем наибольший общий делитель любых двух чисел в такой тройке. По алгоритму Евклида, он равен наибольшему общему делителю в предыдущей аддитивной тройке, из которой была образована данная. Так как все такие тройки, в конечном итоге, образуются из простейших троек, в которых любые два числа взаимно просты, то в любой тройке все числа попарно взаимно просты. Теорема доказана.

Доказательство (Теорема 2). Разобьём теорему на два утверждения. Первое утверждение: «Никакая тройка в последовательности не встретится дважды». Второе утверждение: «Любая аддитивная тройка со взаимно простыми компонентами входит в трёхмерную последовательность Фибоначчи».

Обозначим за отношение между двумя числами, сумма которых образует третье число аддитивной тройки (для удобства отношения можно брать циклически, например, если сумма стоит на втором месте в тройке, то берётся отношение третьего числа к первому; а если сумма стоит на первом месте, то рассматривается отношение второго числа к третьему). Так как числа аддитивной тройки попарно взаимно просты, то л можно считать несократимой дробью. Для конкретной тройки Ma[b] известен номер множества, в котором она содержится, значит, можно сказать, на каком месте в тройке стоит сумма. Следовательно (так как числа взаимно просты), из несократимой дроби можно восстановить исходную тройку. Поэтому далее вместо аддитивных троек мы для удобства доказательства будем писать лишь число л. Ясно, что если было выписано число л, то в более нижних рядах будут выписаны числа и . Теперь докажем исходные утверждения. Понятно, что производная «первым способом», то есть f(л) даёт тройку (), а вторым способом, то есть g(л), даёт тройку (). Зная такое число, можно определить (с учётом приведенных неравенств), с помощью какой производной оно было образовано. Действительно, если л<1, то она образована с помощью первой производной, если л>1, то с помощью второй. Если л=1, то эта тройка - простейшая. Итак, для каждой аддитивной тройки мы однозначно восстанавливаем её первообразные вплоть до простейшей тройки. Если бы встретились две одинаковые тройки, то они, с учётом приведенных рассуждений, были бы образованы от одной простейшей, и стояли бы в одном множестве, а значит, совпадали. Поэтому такое невозможно. Первое утверждение доказано. С другой стороны, чтобы доказать второе утверждение, достаточно рассмотреть произвольную дробь и показать, что с помощью приведенных выше преобразований можно получить эту дробь из единицы. Это нетрудно сделать, используя алгоритм Евклида. Если дробь больше единицы, отнимем от неё единицу. Если меньше, то разделим единицу на эту дробь. Так как числа в дроби взаимно просты, то бесконечно такие преобразования выполнять нельзя, поэтому рано или поздно мы придём к единице, а значит, такое число (и соответствующая ему аддитивная тройка) будет содержаться в 3-х мерной последовательности Фибоначчи.

Теорема доказана.

2. Упорядочивание, вычисление элементов последовательности

Упорядочим элементы каждого множества следующим образом:

Для начала, i-тый элемент множества Mk будем обозначать Мk[i].

В первом множестве находится единственная аддитивная тройка: М1[1]= =(2,1,1).

f(Мa[b]) = Ma+1[b] (Первая производная от аддитивной тройки Мa[b] лежит в следующем множестве, но индекс аддитивной тройки сохраняется.)

g(Ma[b]) = Ma+2[b+|Ma+1|] (Вторая производная от аддитивной тройки лежит в множестве «через одно», индекс увеличивается на количество элементов в множестве Мa+1.)

Изобразим это схематически (каждая аддитивная тройка обозначена точкой).

Итак, мы занумеровали, то есть упорядочили элементы каждого множества Мi. Определим для всех a и b, для которых определена аддитивная тройка Мa[b], все три её элемента.

Для начала найдём все тройки вида Ma[1] (тройки первого столбца). Вычисляя результаты первых троек, замечаем общую закономерность и вычисляем общий вид.

M1[1] = (2, 1, 1) = (F3, F1, F2)

M3k+1[1] = (F3k+3, F3k+1, F3k+2)

M2[1] = (2, 3, 1) = (F3, F4, F2)

M3k+2[1] = (F3k+3, F3k+4, F3k+2)

M3[1] = (2, 3, 5) = (F3, F4, F5)

M3k[1] = (F3k, F3k+1, F3k+2)

Заметим, что если требуется вычислить некоторое число из обычной последовательности Фибоначчи, возможно, с изменёнными первыми членами, то для этого идеально подходит характеристический многочлен. Таким образом, все аддитивные тройки первого столбца можно вычислить в общем виде.

3. Некоторые зависимости между мнимыми тройками

Теперь расширим понятие Ma[b]. Определим её для всех целых a. Для этого введём понятие «первообразной».

Первообразной от аддитивной тройки Т1 назовём такую аддитивную тройку Т0, что производная первым способом от неё равна аддитивной тройке Т1. При этом стоит отметить, что не каждая первообразная является натуральной тройкой, то есть не все числа в первообразной натуральны.

Первообразные от троек считаются по следующему правилу:
Аналогичным образом можно определить «N раз производную» и «N раз первообразную» - это композиции N подряд идущих функций либо f, либо g, либо f-1. Поместим первообразную от аддитивной тройки Ma[b] во множество Ma-1,
то есть f-1(Ma[b])=Ma-1[b]. Таким образом, многомерная последовательность Фибоначчи определена Ma[b] для всех целых b.
Теперь полученную 3х-мерную последовательность Фибоначчи можно изобразить так:
17
Итак, определены все аддитивные тройки Ma[b], где b - натуральное, a целое. В частности, рассмотрим аддитивные тройки вида M1[i], то есть тройки, находящиеся в первом ряду.
Каждая такая аддитивная тройка имеет вид (xi+yi, xi, yi) и определяется двумя числами: xi и yi.
Рассмотрим последовательность Фибоначчи, в которой первые два числа равны соответственно xi и yi, а каждое число, начиная с третьего по-прежнему равняется сумме двух предыдущих. Зная числа xi, yi i-того столбца можно вычислить все аддитивные тройки в этом столбце, по аналогии с первым столбцом.
Итак, имеют место следующие равенства:
M3k+1[i]=(F3k+3, F3k+1, F3k+2)
M1[i]=(xi+yi, xi, yi)
M3k+2[i]=(F3k+3, F3k+4, F3k+2)
F1=xi, F2=yi и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.