На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Над множествами определяют операции, во многом сходные с арифметическими. Операции над множествами интерпретируют геометрически с помощью диаграмм Эйлера-Венна.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 03.02.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


9
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ТАВРИЧЕСКОЕ ПРДСТАВИТЕЛЬСТВО ОТКРЫТОГО МЕЖДУНАРОДНОГО УНИВЕРСИТЕТА РАЗВИТИЯ ЧЕЛОВЕКА (УКРАИНА)
Реферат
По дисциплине
«Математические основы информационной деятельности»
Тема:
«Множества и операции над ними»

студентки 2 курса
З/0 Козловой Е.А.
Преподаватель:
Глушкова Л.В.
Факультет документации
и информационной деятельности
Симферополь, 2004
Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Если есть такая совокупность, разумеется, как единое целое, говорят, что имеют дело с множеством.
Приведенное определение не может рассматриваться как математически строгое, поскольку понятие множества является исходным, на основе него строятся остальные понятия математики. Тем не менее, из при веденного определения ясно, как можно говорить с множестве, например, действительных чисел или множестве плоских фигур.
Если множество состоит из конечного числа элементов, оно называется конечным. Остальные множества называются бесконечными. Для множества используются следующие обозначения:
А = {а,b,с,d}
Приведенное обозначение записано для множества А, состоящего из элементов а, Ь, с, d.
Конечные множества можно задать перечнем их элементов, бесконечные -- нельзя. Обычно бесконечное множество задают, указывая на свойства, которым обладают все элементы данного множества, при этом подчеркивают, что таким свойством не обладают никакие элементы, не входящие в это множество. Такое свойство называется характеристическим для рассматриваемого множества.
Множество, в котором не содержится ни одного элемента, называется пустым. Обозначается оно знаком .
Множества, состоящие из одних и тех же элементов, называют совпадающими. Например, совпадают два конечных множества, которые отличаются друг от друга порядком их элементов. Если элемент а принадлежит множеству А, то пишут:
а А.
В противном случае пишут:
а А.
Если одно множество является частью другого множества, говорят, что первое множество является подмножеством второго. Если первое множество обозначить А, а второе В, то обозначение такое:
А В.
Для любого множества А справедливы высказывания: множество А является подмножеством самого себя. Пустое множество является подмножеством любого множества.
В качестве примера можно привести высказывание о том, что множество всех ромбов является подмножеством множества параллелограммов.
Над множествами определяют операции, во многом сходные с арифметическими. Рассмотрим понятие таких операций только над двумя множествами А и В, которые являются разнообразными подмножествами одного и того же множества U. Последнее назовем универсальным множеством. Операции над множествами удобно интерпретировать геометрически с помощью диаграмм Эйлера-Венна (рис. 1 -- 4).
Определение 1. Пересечением множеств А и В называют их общую часть С. Другими словами, пересечение множеств А и В образуют элементы, принадлежащие равно как А, так и В
9
Такое множество обозначают:
С = А В
9
Определение 2. Объединением множеств А и В, называют множество С, составленное из элементов, принадлежащих хотя бы одному из этих множеств
Определение 3. Разностью множеств А и В называют множество
С = В \ А,


составленное из элементов, принадлежащих множеству В, но не принадлежащих множеству А
Разность U \ A называется дополнением множества А до универсального множества U и обозначается: = U \ A
Геометрическая интерпретация множества дана на следующем рисунке:
9
Если применять операции объединения и пересечения- к подмножествам некоторого множества D, то снова получатся подмножества того же множества D.
Операции объединения и пересечения обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности. Пересечение дистрибутивно относительно объединения, то есть для любых множеств А, В и С верно соотношение:
А (В и С) = (А В)и (А С).
В то же время операции над множествами имеют ряд свойств, у которых нет аналогов в операциях над числами. Так, для любого множества А верны равен ства:
А А = А, а также А и А = А.
И также
А и (В С) = (А и В) (А и С)
С помощью свойств операции над множествами можно преобразовывать выражения, содержащие множества, подобно тому, как с помощью свойств операций над числами преобразовывают выражения в алгебре. Подобные действия над множествами и изучает булева алгебра, которая названа по имени английского исследователя Дж. Буля (1815 -- 1864). Какими характеристиками можно описывать множества? Основной характеристикой конечного множества Является число его элементов.
Рассмотрим два множества А и В. Если в этих множествах находится одинаковое количество элементов, то из этих элементов можно составить пары таим образом, чтобы каждый элемент из множества , как и элемент из мн и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.