На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 11.03.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


РЕФЕРАТ
Множества. Операции над множествами
СОДЕРЖАНИЕ

Способы задания множества
Включение и равенство множеств
Диаграммы Эйлера-Венна
Операции над множествами
а) Объединение множеств
б) Пересечение множеств
в) Разность множеств
Дополнение множества
Понятие множества принадлежит к числу основных, неопределяемых понятий математики. Оно не сводится к другим, более простым понятиям. Поэтому его нельзя определить, а можно лишь пояснить, указывая синонимы слова «множество» и приводя примеры множеств: множество - набор, совокупность, собрание каких-либо объектов (элементов), обладающих общим для всех их характеристическим свойством.
Примеры множеств:
1) множество студентов в данной аудитории;
2) множество людей, живущих на нашей планете в данный момент времени;
3) множество точек данной геометрической фигуры;
4) множество чётных чисел;
5) множество корней уравнения х2-5х+6=0;
6) множество действительных корней уравнения х2+9=0;
Основоположник теории множеств немецкий математик Георг Кантор (1845-1918) писал: «Множество есть многое, мыслимое нами как единое». И хотя это высказывание учёного не является в полном смысле логическим определением понятия множества, но оно верно поясняет, что когда говорят о множестве, то имеют в виду некоторое собрание объектов, причём само это собрание рассматривается как единое целое, как один (новый) объект.
Объекты, составляющие данное множество, называют его элементами.
Множество обычно обозначают большими латинскими буквами, а элементы множества ? малыми латинскими буквам. Если элемент, а принадлежит множеству А, то пишут: а А, а если а не принадлежит А, то пишут: а А.
Например, пусть N-множество натуральных чисел. Тогда 5N , но N, N. Если А - множество корней уравнения х2-5х+6=0, то 3 А, а 4А.
В математике часто исследуются так называемые числовые множества, т.е. множества, элементами которых являются числа. Для самых основных числовых множеств утвердились следующие обозначения:
N- множество всех натуральных чисел;
Z- множество всех целых чисел;
Q- множество всех рациональных чисел;
R- множество всех действительных чисел.
Приняты также обозначения Z+ , Q+, R+ соответственно для множеств всех неотрицательных целых, рациональных и действительных чисел, и ZЇ, QЇ, RЇ -для множеств всех отрицательных целых, рациональных и действительных чисел.
Способы задания множества

Множество А считается заданным, если относительно любого объекта а можно установить, принадлежит этот объект множеству А или не принадлежит; другими словами, если можно определить, является ли а элементом множества А или не является. Существуют два основных способа задания множества:
1) перечисление элементов множества;
2) указание характеристического свойства элементов множества, т.е. такого свойства, которым обладают все элементы данного множества и только они.
Первым способом особенно часто задаются конечные множества. Например, множество студентов учебной группы задаётся их списком. Множество, состоящее из элементов a, b, c, … ,d ,обозначают с помощью фигурных скобок: А={a; b; c; …;d} . Множество корней уравнения х2-5х+6=0 состоит из двух чисел 2 и 3: А={2; 3}. Множество В целых решений неравенства -2 < х < 3 состоит из чисел -1, 0, 1, 2, поэтому В={-1; 0; 1; 2}.
Второй способ задания множества является более универсальным. Множество элементов х, обладающих данным характеристическим свойством Р(х), также записывают с помощью фигурных скобок: Х={х | Р (х)}, и читают: множество Х состоит из элементов х, таких, что выполняется свойство Р(х). Например, А={х | х2-5х+6=0}. Решив уравнение х2-5х+6=0, мы можем записать множество А первым способом: А={2; 3}.
Другой пример: Х={х | -1 ? х < 4, х Z}, т.е. Х есть множество целых чисел х, таких, что -1 ? х < 4, значит, по-другому: Х={-1; 0; 1; 2; 3}.
Рассмотрим и такой пример: F={f | ¦fґ(x)¦? 1 , 1 < x < 2}, т.е. F- множество функций f, производная которых в интервале (1; 2) не превосходит по абсолютной величине числа 1.
Может случиться, что характеристическим свойством, определяющим множество А, не обладает ни один объект. Тогда говорят, что множество А - пустое (не содержит ни одного элемента) и пишут: А= Ш.
Например, А={х | хІ+9=0, хR} -множество действительных чисел х, таких, что хІ+9=0- пустое множество, т.к. таких действительных чисел нет.
Включение и равенство множеств

Пусть Х и У - два множества. Если каждый элемент х множества Х является элементом множества У, то говорят, что множество Х содержится во множестве У и пишут: Х У или У Х. Говорят также, что Х включено в У или У включает Х, или что Х является подмножеством множества У. Знаки включения или относятся только ко множествам и их не следует смешивать со знаками принадлежности и . Если, например, А - множество всех студентов вуза, а В - множество студентов-первокурсников этого вуза, то В есть подмножество А, т.е. В А. Пустое множество считают подмножеством любого множества Х, т.е. Ш Х, каким бы ни было множество Х. Ясно также, что каждое множество является подмножеством самого себя: Х Х.
Если для двух множеств Х и У одновременно имеют место два включения Х У и У Х, т.е. Х есть подмножество множества У и У есть подмножество множества Х, то множества Х и У состоят из одних и тех же элементов. Такие множества Х и У называют равными и пишут: Х=У. Например, если А={2; 3}, а В={х | хІ -5х+6=0}, то А=В.
Если Х У, но Х? У, т.е. существует хотя бы один элемент множества У, не принадлежащий Х, то говорят, что Х есть собственное подмножество множества У, и пишут: Х У. Например: NZ, ZQ, QR. Далее нам потребуется множество, которое содержит в качестве своего подмножества любое другое множество. Такое «всеобъемлющее» множество будем называть универсальным и обозначать буквой U .
Диаграммы Эйлера-Венна

Для наглядного представления множеств используют диаграммы Эйлера-Венна. В этом случае множества обозначают областями на плоскости и внутри этих областей условно располагают элементы множества. Часто все множества на диаграмме размещают внутри прямоугольника, который представляет собой универсальное множество U. Если элемент принадлежит более чем одному множеству, то области, отвечающие таким множествам, должны перекрываться, чтобы общий элемент мог одновременно находиться в соответствующих областях. Выбор формы обл и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.