На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Множество неотрицательных действительных чисел как интерпретируемое подмножество R. Делимость в мультипликативных полугруппах. Строение числовых НОД и НОК полугрупп. Изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 27.05.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


2
Содержание

    Введение 3
    Основные понятия и определения 4
    Глава 1. Делимость в мультипликативных полугруппах 7
      §1. Свойства НОД и НОК 7
      § 2. Строение числовых НОД и НОК полугрупп 11
    Глава 2. Мультипликативные полугруппы неотрицательных чисел со свойствами (*) и (**) 15
    Библиографический список 19

Введение

В математических исследованиях множество действительных чисел R очень популярно как бескрайний источник простых примеров и как множество, использующееся во многих структурах.

Рассматриваемое в данной работе множество неотрицательных действительных чисел - это интересное легко интерпретируемое подмножество R.

Как известно, различные подалгебры множества R+ (например, полугруппа N) исследовались ранее. В этой работе мы продолжим изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.

Работа состоит из двух глав. Первая глава содержит некоторые свойства наибольшего общего делителя и наименьшего общего кратного элементов целой полугруппы (§1). В этой же главе говорится о строении НОД и НОК полугрупп. Во второй главе получена топологическая классификация мультипликативных полугрупп SR+, обладающих одним из введенных специфических свойств:

(*) (a<b);

(**) (0<a<b).

Основные понятия и определения

Определение 1. Пусть Х - множество произвольной природы и - семейство подмножеств Х, называемых открытыми, удовлетворяющее условиям:

1) пересечение конечного числа множеств из принадлежит ,

2) объединение любого множества множеств из принадлежит ,

3) и .

Тогда называется топологическим пространством, - топологией на Х.

Определение 2. Дополнения открытых множеств в Х называются замкнутыми множествами.

Определение 3. Пусть - топологическое пространство и . Введем на множестве Х1 топологию 1. Открытыми в пространстве назовем все множества вида , где U - произвольное открытое множество в Х. Тогда пространство называется подпространством топологического пространства , а топология 1 - топологией, индуцированной топологией на множество Х1.

Определение 4. Семейство открытых множеств в топологическом пространстве называется базой топологии , если любое открытое множество в Х является объединением множеств из этого семейства.

Пример. На числовой прямой R с естественной (евклидовой) топологией открытыми множествами являются всевозможные объединения интервалов, они и образуют базу этой топологии. На множестве неотрицательных чисел R+ эта топология индуцирует топологию, в которой открытым множеством будет, например,  R+ (-1, 1).

Определение 5. Пространство Х1 называется плотным подпространством пространства Х, если любое непустое открытое множество в Х содержит точки множества Х1.

Очевидно, Х1 плотно в Х, если каждая точка подпространства Х1 является предельной точкой множества Х.

Определение 6. Множества в топологическом пространстве, являющиеся одновременно открытыми и замкнутыми, называются открыто-замкнутыми.

Определение 7. Топологическое пространство Х называется связным если открыто-замкнутыми множествами в нем являются лишь Х и .

Определение 8. Множество Х1 в топологическом пространстве Х называется связным, если оно связно как топологическое подпространство пространства Х.

Примеры:

1. Множество точек плоскости является связным, если в нем любую пару точек можно соединить кривой.

2. На числовой прямой связными множествами являются лишь промежутки.

Определение 9. Топологическое пространство называется нульмерным, если оно обладает базой из открыто-замкнутых множеств.

Пример. Дискретное топологическое пространство, в котором все его подмножества являются открытыми, - нульмерно.

Далее везде будем обозначать символом S мультипликативную полугруппу.

Определение 10. Множество S с бинарной операцией умножения называется мультипликативной полугруппой, если эта операция обладает свойством ассоциативности, т.е. .

Определение 11. Элемент bS называется делителем элемента аS, если для некоторого . При этом говорят, что делится на , или делит (|).

Определение 12. Общий делитель элементов и , делящийся на любой их общий делитель, называется наибольшим общим делителем элементов и и обозначается НОД.

Определение 13. Элемент S называется кратным элементу S, если a делится на b.

Определение 14. Общее кратное элементов и , на которое делится любое их общее кратное, называется наименьшим общим кратным элементов и и обозначается НОК.

Определение 15. Полугруппа S называется НОД-полугруппой (НОК-полугруппой), если любые два элемента из S имеют наибольший общий делитель (наименьшие общее кратное).

Определение 16. Элемент из S называется неприводимым, если он имеет ровно два делителя 1 и а. Неприводимые элементы не представимы в виде произведения неединичных элементов, т.е. если .

Определение 17. Элемент из S называется простым, если . Очевидно, простые элементы неприводимы.

Определение 18. Полугруппа S называется топологической полугруппой, если на множестве S введена топология, и топологическая и алгебраическая структуры в S согласованы, т.е.

1) S, - полугруппа;

2) S - топологическое пространство;

3) полугрупповая операция непрерывна в S:

.

Глава 1. Делимость в мультипликативных полугруппах

§1. Свойства НОД и НОК

Пусть S - коммутативная мультипликативная несократимая полугруппа с 1 и без делителей единицы. Такие полугруппы называются целыми, или коническими.

Элементы и из S называются взаимно простыми, если НОД(,)=1.

Предварительно рассмотрим простейшие свойства отношения делимости в целых полугруппах.

Свойства делимости в целых полугруппах

(1) ;

(2) - рефлексивность;

(3) - антисимметричность;

(4) - транзитивность;

(5) ;

(6) ;

(7) Любой простой элемент неприводим;

(8) р неприводим ;

Свойство 1. НОД и НОК нескольких элементов определены однозначно, если существуют.

Доказательство. Проведем доказательство для НОД двух элементов а и b из S. Пусть (a,b) и (a,b). Тогда из определения НОД следует и . По свойству антисимметричности имеем .

Свойство 2. .

Доказательство. Импликации и очевидны. Пусть , т.е. для некоторого . Очевидно, b - общий делитель а и b. Возьмем произвольный общий делитель с элементов а и b. Для него существуют такой элемент , что и . Таким образом, с делит b. Это и означает, что . Аналогично доказывается .

Следствие 1. .

Следствие 2. и .

Свойство 3. и .

Доказательство следует из коммутативности операции умножения и свойств делимости.

Свойство 4. .

Доказательство. Обозначим d1=НОД(НОД(a,b),c). Так как d1 является общим делителем НОД(a,b) и c, то d1 - общий делитель и для элементов a,b и c. Верно и обратно: любой общий делитель этих трех элементов является общим делителем для НОД(a,b) и c. Аналогичным свойством обладает и элемент d2=НОД(a, (НОД(b,c)). Тогда элементы d1 и d2 делят друг друга. По свойству антисимметричности делимости получаем d1=d2.

Свойство 5. .

Доказательство. Обозначим k1=НОК(НОК(a,b),c). Так как k1 является общим кратным элементов НОК(a,b) и c, то k1 - общее кратное и для элементов a,b и c. Верно и обратно: любое общее кратное этих трех элементов является общим кратным для НОК(a,b) и c. Аналогичным свойством обладает и элемент k2=НОК(НОК(a,b),c). Тогда элементы k1 и k2 делят друг друга. По свойству антисимметричности делимости получаем k1=k2.

Свойство 6. Если элементы а и b не взаимно просты, то а и b имеют общий делитель, не равный 1.

Доказательство. По условию НОД(a,b)=d1. Тогда по определению d и есть не равный единице общий делитель а и b.

Свойство 7. =.

Доказательство. Обозначим d=НОД(a,b). По свойству (6) делимости элемент сd делит любой общий делитель элементов ас и bс, следовательно, является их НОД. Свойство доказано.

Свойство 8. Если , то .

Доказательство. Из условия следует, что d делит любой общий делитель элементов а и b и . Тогда по свойству (6) делимости элемент делит любой общий делитель элементов , следовательно, является их НОД. Свойство доказано.

Свойство 9. Если и , то .

Доказательство. Пусть НОД и НОД(а,b) = 1, тогда среди делителей элементов b и с нет делителей элемента а. Следовательно, и среди делителей элемента bc нет делителей элемента а, что и означает, что .

Свойство 10. Если , то для любых N.

Доказательство. Докажем, что методом математической индукции. Пусть m = 1, тогда по условию, т.е. база индукции верна. Предположим, что для всех k < m. Покажем, что при k = m. по свойству (10) для с = b. Отсюда, для всех N. по свойству 3 делимости. Аналогичными рассуждениями получаем для любого N. Следовательно, .

Свойство 11. Если , то для любого .

Доказательство. Пусть , тогда а = sd и c = td для некоторых s,tS таких, что НОД(s,t) = 1. Поскольку , то НОД(s,b) = 1 и по свойству 9 НОД(s,tb) = 1. Следовательно, . Свойство доказано.

Свойство 12. Существование НОК(a,b) влечет существование НОД(a,b) и равенство НОД(a,b) НОК(a,b) = ab.

Доказательство. Если хотя бы одно из чисел или равно 0, то и равенство справедливо. Пусть элементы и ненулевые и . Поскольку - общее кратное чисел и , то для некоторого . Так как и , то - общий делитель и . Докажем, что делится на любой общий делитель элементов и . Пусть - произвольный общий делитель чисел и , т.е. и для некоторых . Поскольку - общее кратное элементов и , то . Так как , то для некоторого . Отсюда . Следовательно, , и, значит, НОД().

Предложение 1. Полугруппа является НОК-полугруппой тогда и только тогда, когда есть НОД-полугруппа.

Доказательство. По свойству 12 достаточно доказать, что любая НОД-полугруппа является НОК-полугруппой. Пусть есть НОД-полугруппа. Возьмем произвольные . Если хотя бы одно из чисел равно 0, то . Рассмотрим случай и . Обозначим . Тогда и для некоторых . Поскольку по свойству 7, то . Положим . Число является общим кратным элементов и . Осталось показать, что на делится любое общее кратное и . Возьмем произвольное общее кратное элементов и , т. е. для некоторых . Тогда , т.е. (поскольку ). По свойству 11 имеем , значит, для некоторого . Поэтому , т.е. .

§ 2. Строение числовых НОД и НОК полугрупп

Далее будем рассматривать множество всех неотрицательных действительных чисел R+ и мультипликативную полугруппу SR+, содержащую 0 и 1, с топологией, индуцированной топологией числовой прямой.

Лемма 1. Если S связно, то S= или S=R+.

Доказательство. Пусть S связное множество в R+. Тогда S являет и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.