На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Статья Основа физики геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

Информация:

Тип работы: Статья. Предмет: Математика. Добавлен: 22.06.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


Не единственность преобразований Лоренца.
Рассмотрим пространство Минковского и изотропный конус. Рассмотрим две точки М и М' на поверхности изотропного конуса. Попробуем определить: есть ли единственность перевода точки М в точку М', то есть, только ли известные преобразования Лоренца переводят М в М'.
Преобразования должны быть ортогональны, чтобы преобразования входили в ортогональную группу, для которой существует инвариант двух точек, то есть интервал, что дает нам право задать метрическую форму.
Рассматриваем, как получают условие ортогональности: оно начинается с рассмотрения вырожденности канонической квадратичной формы. Форма должна быть не вырожденной, тогда используется известная формула. Так как мы рассматриваем поверхность изотропного конуса, то форма у нас тождественный ноль, а значит вырождена. Это означает, что наша форма должна иметь на одну координату меньше, чем размерность пространства. (Все это общеизвестные факты, см. литературу.) Если точку М определяют координаты x,y,z,t, а точку М' определяют координаты x',y',z',t', тогда преобразования Лоренца (не будем расписывать всем известные коэффициенты) выглядят:
(1) t=At'+Bx', x=Dt'+Ex' , y=y', z= z',
Чтобы форма не была тождественно равна нулю, и чтобы в ней было не четыре координаты (так как размерность пространства четыре) нам необходимо зафиксировать, к примеру, координату z=z^, z'=z^'. Разделим форму для x,y,z,t на z^, а форму для x',y',z',t' на z^', а затем заменим все координаты:
(2) T=t/z^, X= x/z^, Y=y/z^ и T'=t'/z^', X'=x'/z^', Y'=y'/z^',
ясно, что мы получили квадратичные формы в каноническом виде отличные от нуля (не будем их расписывать).
Подставим в (2) формулы (1), тогда (в трехмерном пространстве, на котором заданы координаты T,X,Y):
(3) T= AT'+BX', X= DT'+EX', Y=Y',
уравнения (3) в точности совпадают с извес и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.