На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 10.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


39

Введение

В развитии геометрии можно указать четыре периода.

Первый период (до 7 в. до н. э) - зарождение геометрии в Египте и Вавилоне. Геометрия этого периода - наука эмпирическая.

Второй период (7-3 в. до н. э) - греческий. В Греции геометрия тесно связана с философией. Геометрия этого периода - наука теоретическая.

В 3 в. до н.э. появились „Начала" Евклида - первая попытка построения геометрии на принципах Аристотеля (384-322 до н. э).

Третий период (17-18 в) развития геометрии связан с переходом её на качественно новую ступень по сравнению с геометрией древних. Этот период времени характерен открытием новых методов исследования и появлением различных дисциплин.

Аналитическая геометрия, дифференциальная геометрия, проективная геометрия, начертательная геометрия - это всё приложения того или иного аппарата к объектам евклидовой геометрии.

Четвёртый период (с 19 в) в развитии геометрии связан с именами русского математика Н.И. Лобачевского (1793-1856), немецкого математика К. Гаусса (1777-1855) и венгерского математика Я. Бойаи (1802-1860).

Именно эти учёные независимо друг от друга пришли к открытию неевклидовой геометрии, которая называется теперь геометрией Лобачевского.

Этот период времени ознаменован более пристальным вниманием математиков к проблеме обоснований геометрии.

Почти в одно и то же время появляются различные аксиоматические системы для обоснования евклидовой геометрии. Одна из них принадлежит немецкому математику Д. Гильберту (1540-1603).

Система аксиом Гильберта состоит из пяти групп (аксиомы связи, аксиомы порядка, аксиомы конгруэнтности, аксиомы непрерывности, аксиома параллельности).

Если в этой системе аксиом заменить аксиому параллельности на аксиому Лобачевского, то мы получим аксиоматику геометрии Лобачевского, которая и рассматривается в дипломной работе.

В связи с аксиоматическим построением геометрии возникает, в частности, вопрос о непротиворечивости выбранной аксиоматики, что связано с построением некоторой модели.

В дипломной работе предлагается одна из моделей геометрии Лобачевского, а именно, модель французского учёного А. Пуанкаре (1854-1912), и с помощью её решается вопрос о непротиворечивости геометрии Лобачевского.

Заметим, что при построении модели Лобачевского большую роль играет инверсия (симметрия относительно окружности). Поэтому первая глава работы посвящена инверсии.

Глава 1. Инверсия и её свойства

1. Определение инверсии

Присоединим к евклидовой плоскости „бесконечно удалённую" точку . Получим расширенную плоскость, обозначим её через П.

Пусть в плоскости П дана окружность (O,r) с центром O и радиусом r.

Определение. Инверсией относительно окружности (O,r) называют такое отображение П на себя, при котором всякой точке АП, (А?О, А?) ставится в соответствие точка А'П так, что выполняются условия:

1) А' [OA),

2) |OA|·|OA'|=.

Точке О ставим в соответствие точку и, обратно, точке -точку О.

Символом обозначим инверсию относительно окружности (O,r).

Отметим простейшие свойства инверсии, которые вытекают из определения.

. Пусть АП и (A) =A'. Тогда (A') =A.

Точки А и А' называются инверсными.

. Инверсия является 1-1 отображением расширенной плоскости П на себя.

. Пусть АП и (A) =A'.

Если |OA|>r, то |OA'|<r.

Если |OA|<r, то |OA'|>r.

Если |OA|=r, то |OA'|=r.

Таким образом, точки окружности (O,r) и только они, являются при неподвижными.

Легко выполнить построение точки, инверсной данной. Рассмотрим три возможных случая:

1) |OA|=r, то A'=A.

2) |OA|>r. Проведём [OA). Через точку А проводим касательную к (O, r). Пусть Т - точка касания. Проведём из Т перпендикуляр на [OA). Основание этого перпендикуляра и есть искомая точка А'. Действительно, из прямоугольного ОТА имеем |OA|·|OA'|==.

3) |OA|<r. В силу свойства получаем

следующее построение: восставляем в точке А перпендикуляр к [OA), в точке пересечения этого перпендикуляра с (O, r) проводим касательную к (O, r) и в пересечении касательной с [OA) получаем искомую точку А'.

Продолжим рассмотрение свойств инверсии.

. Пусть AПи ВПи (A) =A', (B) =B'.

Тогда

Доказательство.

ОАВ~ОВ'А',

тогда

.

Учитывая, что

,

получаем

Введём понятие сложного отношения четырёх точек.

Определение.

.

. Инверсия сохраняет сложное отношение четырёх точек.

Доказательство. Даны точки A, B, C, D. (A) =A',

(B) =B', (C) =C', (D) =D'. Используя предыдущее свойство, имеем:

.

Отсюда получаем

Тогда

т.е. (ABCD) = (A'B'C'D').

Замечание.

Пусть A'= (A). Имеем

Откуда, перемножив, получаем

и .

Зафиксируем точку В, а r пусть неограниченно возрастает, тогда |AB|=|A'B|, т.е. инверсия относительно „окружности бесконечно большого радиуса" есть симметрия относительно прямой.

2. Аналитическое задание инверсии

Пусть A'= (A), где АO, А. Введём на плоскости декартову прямоугольную систему координат так, чтобы её начало совпало с точкой О.

Пусть x, y - координаты точки А, x', y'-координаты точки А'. Выразим х и у через х' и у'. Имеем А' [OA) и

,

.

Очевидным образом получаем

,

откуда находим

(1)

3. Преобразование окружности и прямой при инверсии

Пусть (O, r) П. Рассмотрим окружность SП. Найдём (S).

Введём на плоскости систему координат хОу. Пусть в этой системе координат окружность S имеет уравнение

A () +Bx+Cy+D=0 (2)

Подвергнем S инверсии . Подставляя в (2) вместо х и у их выражения из (1), получим

A+Bx'+Cy'+D () =0 (3)

Если D=0, т.е. если OS, то (S) - прямая, не проходящая через О.

Если D0, т.е. если OS, то (S) - окружность, не проходящая через точку О.

Итак, доказана.

Теорема 1. Если окружность проходит через центр инверсии, то она преобразуется при инверсии в прямую, не проходящую через центр инверсии; если окружность не проходит через центр инверсии, то она преобразуется в окружность, не проходящую через центр инверсии.

Аналогично доказывается следующая.

Теорема 2. Если прямая проходит через центр инверсии, то она преобразуется при инверсии в себя; если прямая не проходит через центр инверсии, то она преобразуется в окружность, проходящую через центр инверсии.

4. Сохранение углов при инверсии

Определение. Прямые a и b назовём антипараллельными относительно О, если.

Лемма. Если (A) =A' и (B) =B', то прямые АВ и А'В' антипараллельны.

Доказательство получим, рассмотрев ОАВ и ОА'В'.

Теорема 3. Инверсия сохраняет величину углов.

Доказательство. Пусть f и g-кривые, выходящие из точки А, f'= (f), g'= (g) и A'= (A).

Проводим из точки О луч, пересекающий f и g в точках В и С соответственно. Пусть B'= (B), C'= (C). По лемме прямые АВ и А'В', АС и А'С' антипараллельны. Значит, OA'B'=OBA

и OA'C'=OCA, тогда

C'A'B'=OA'B' - OA'C'=OBA-OCA=CAB.

Переходя в равенстве C'A'B'=CAB к пределу при АОС0 (луч ОС приближаем к лучу ОА), получим утверждение теоремы.

Замечание. Доказанное свойство позволяет легко строить образы прямых и окружностей при инверсии.

Пусть, например, дана прямая L и

Проведём луч l с началом О, перпендикулярно L.

Пусть A'= (A).

В силу теорем 2 и 3 заключаем, что L'= (L) - окружность с диаметром ОА'.

5. Инвариантные прямые и окружности

Из теоремы 2 следует, что прямые, проходящие через центр инверсии, и только они, отображаются при на себя, т.е. эти прямые инвариантны при .

Мы уже отмечали, что ( (O,r)) = (O,r), т.е. окружность (O,r) инвариантна при .

Существуют ли другие окружности, инвариантные при ? Ответ на этот вопрос даёт следующая.

Теорема 4. Пусть S-окружность, отличная от (O,r). (S) =S тогда и только тогда, когда S ортогональна (O,r),

Доказательство. Допустим, что (S) =S. Ясно, что S пересекает (O,r) в двух точках, скажем, A и B.

Имеем .

Согласно теореме 3

( (O,r) ^) = ( (O,r) ^),

а это означает ортогональность S и (O,r).

Докажем обратное. Пусть теперь (O,r) ортогональна S, A и B - точки пересечения S и (O,r).

Проведём в точке А касательные к S и (O,r), которые пройдут через центры окружностей (O,r) и S соответственно.

Отсюда ясно, что S-единственная окружность, ортогональная (O,r) и проходящая через точки A и B.

Так как (если допустить, что , то (S) - прямая, ортогональная (O,r) и не проходящая через точку O, что невозможно), то (S) - окружность, ортогональная (O,r) и проходящая через точки A и B. Значит, (S) =S.

Теорема 5. Окружность, проходящая через две инверсные точки, преобразуются при инверсии в себя.

Доказательство. Пусть A'= (A), S - окружность такая, что и . Пусть B - произвольная точка S и B'=, тогда

,

т.е. (B) =B', а это значит, что

(S) =S'.

Следствие. Окружность, проходящая через две инверсные точки, ортогональна к окружности инверсии.

Рассмотрим далее две задачи, которые нам потребуются в дальнейшем изложении.

Задача 1. Дана прямая и окружность. Найти инверсию, переводящую прямую в окружность.

Дана прямая l и окружность S с центром в точке С. Проведём (СР)

l,.

Примем О за центр инверсии, тогда Р и Р' - инверсные точки, значит

r=.

Итак,

-

искомая инверсия, переводящая прямую в окружность.

Задача 2. Даны две окружности () и (). Найти инверсию, переводящую одну окружность в другую.

Имеет место

Теорема. Любые две неравные окружности гомотетичны и имеют внутренний и внешний центр гомотетии.

Т.к. инверсные точки, по определению, принадлежат одному лучу с вершиной в центре инверсии, то за центр инверсии выберем внешний центр гомотетии.

Пусть это точка О, тогда радиус инверсии

r= (см. рисунок).

6. Модель Пуанкаре геометрии Лобачевского на плоскости

Рассмотрим евклидову плоскость и евклидову прямую f в ней. Прямая f разбивает евклидову плоскость на две полуплоскости. Выберем одну из этих полуплоскостей без её границы и назовём плоскостью Лобачевского.

Точкой Лобачевского (Л-точкой) назовём евклидову точку, принадлежащую выбранной полуплоскости без границы f.

Прямыми Лобачевского (Л - прямыми) назовём евклидовы полуокружности (в том числе и „полуокружности бесконечно большого радиуса”, ортогональные f и расположены в выбранной полуплоскости без границы.

Определим далее отношения „лежать между", „лежать на", „быть конгруэнтными" и покажем, что при этом выполняются все аксиомы геометрии Лобачевского.

Будем говорить, что Л - точка лежит на Л - прямой, если евклидова точка лежит на евклидовой полуокружности или евклидовом луче.

Проверим выполнимость аксиом принадлежности.

Пусть даны Л - точки А и В. Покажем, что существует Л - прямая, проходящая через эти Л - точки.

Проведём евклидову отрезку АВ срединный перпендикуляр в евклидовом смысле.

Если то евклидова полуокружность (О, |OA|) - есть

Л - прямая, если то Л - прямой будет евклидов луч.

Из указанных построений следует выполнимость и аксиомы

Каковы бы ни были точки А и В существует не более одной прямой, проходящей через эти две точки.

На каждой прямой лежат по крайне мере две точки. Существуют три точки, не лежащие на одной прямой.

Аксиома выполняется на модели, т.к это утверждение справедливо для евклидовой полуокружности и евклидова луча.

Замечание. На следующем рисунке представлена на модели

Теорема. Две прямые имеют не более одной общей точки.

Отношение „лежать между" будем понимать в обычном евклидовом смысле для точек полуокружности и луча.

Аксиомы выполняются на модели, т.к они справедливы для евклидовых точек, евклидовых полуокружностей и лучей.

Проверим выполнимость аксиомы .

Пусть даны Л - точки А, В, С, такие, что; и Л - прямая а такая, что

Пусть, далее , и имеет место ADB. Покажем, что на Л - прямой a существует Л - точка F такая, что имеет место либо BFC, либо AFC.

Доказательство следует из теоремы: две евклидовы окружности пересекаются тогда и только тогда, когда одна из них проходит через внутреннюю точку другой окружности.

В самом деле, т.к имеет место ADB, то одна из точек А или В по отношению к окружности а внутренняя, пусть это точка В. Тогда, если точка С лежит вне окружности а, то имеет место BFC; если точка С лежит внутри окружности а, то имеет место AFC.

Замечание. На следующих рисунках представлена интерпретация отрезка, луча, угла, треугольника в плоскости Лобачевского.

[AB]

[Aa)

(a,b)

ДАВС

Прежде чем определить отношение „быть конгруэнтными", введём понятие неевклидова движения.

Пусть Л - прямая а задана в виде евклидовой полуокружности.

Симметрией Л - плоскости относительно Л - прямой а назовём инверсию евклидовой полуплоскости относительно евклидовой полуокружности.

Если Л - прямая а задана в виде евклидова луча, то будем иметь симметрию относительно евклидовой прямой.

Неевклидовым движением назовём конечную цепочку симметрий Л - плоскости относительно Л - прямых.

Будем говорить, что [AB] [CD], если существует неевклидово движение : (A) =C,

(B) =D.

если существует неевклидово

движение :

(а) =с,

(b) =d.

Проверим выполнимость аксиом конгруэнтности.

Пусть дан Л - отрезок uv и Л - луч Аа. Докажем, что

1) на [Aa) существует Л - точка В такая, что [AB] [uv] ;

2) [AB] [BA].

рис. 1

Рис.2

Рассмотрим

;

тогда

Рассмотрим

,

тогда

.

Рассмо и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.