На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Основные свойства непрерывной функции. Теоремы о корне, промежуточном значении и об ограниченности непрерывной функции, их доказательство. Непрерывная на отрезке функция достигает максимума и минимума. Графическое представление корней уравнения.

Информация:

Тип работы: Лекции. Предмет: Математика. Добавлен: 13.02.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Непрерывность функции на интервале и на отрезке

Определение 3.3 Пусть - некоторая функция, - её область определения и - некоторый (открытый) интервал (может быть, с и/или )7. Назовём функцию непрерывной на интервале если непрерывна в любой точке , то есть для любого существует (в сокращённой записи:
Пусть теперь - (замкнутый) отрезок в . Назовём функцию непрерывной на отрезке , если непрерывна на интервале , непрерывна справа в точке и непрерывна слева в точке , то есть

Теорема 3.5 Пусть и - функции и - интервал или отрезок, лежащий в . Пусть и непрерывны на . Тогда функции , , непpеpывны на . Если вдобавок пpи всех , то функция также непpеpывна на .
Из этой теоpемы вытекает следующее утвеpждение, точно так же, как из теоpемы 3.1 - пpедложение 3.3:
Предложение 3.4 Множество всех функций, непpеpывных на интеpвале или отpезке - это линейное пpостpанство:
Более сложное свойство непрерывной функции выражает следующая теорема.
Теорема 3.6 (о корне непрерывной функции) Пусть функция непрерывна на отрезке , причём и - числа разных знаков. (Будем для определённости считать, что , а .) Тогда существует хотя бы одно такое значение , что (то есть существует хотя бы один корень уравнения ).
Доказательство. Рассмотрим середину отрезка . Тогда либо , либо , либо . В первом случае корень найден: это . В остальных двух случаях рассмотрим ту часть отрезка, на концах которой функция принимает значения разных знаков: в случае или в случае . Выбранную половину отрезка обозначим через и применим к ней ту же процедуру: разделим на две половины и , где , и найдём . В случае корень найден; в случае рассматриваем далее отрезок в случае - отрезок и т.д.
Рис.3.16. Последовательные деления отрезка пополам
Получаем, что либо на некотором шаге будет найден корень , либо будет построена система вложенных отрезков
в которой каждый следующий отрезок вдвое короче предыдущего. Последовательность - неубывающая и ограниченная сверху (например, числом ); следовательно (по теореме 2.13), она имеет предел . Последовательность - невозрастающая и ограниченная снизу (например, числом); значит, существует предел . Поскольку длины отрезков образуют убывающую геометрическую прогрессию (со знаменателем ), то они стремятся к 0, и , то есть . Положим, теперь . Тогда
и
поскольку функция непрерывна. Однако, по построению последовательностей и , и , так что, по теореме о переходе к пределу в неравенстве (теорема 2.7), и , то есть и . Значит, , и - корень уравнения .
Пример 3.14 Рассмотрим функцию на отрезке . Поскольку и - числа разных знаков, то функция обращается в 0 в некоторой точке интервала . Это означает, что уравнение имеет корень .
Рис.3.17. Графическое представление корня уравнения
Доказанная теорема фактически даёт нам способ нахождения корня , хотя бы приближённого, с любой заданной наперёд степенью точности. Это- метод деления отрезка пополам, описанный при доказательстве теоремы. Более подробно с этим и другими, более эффективными, способами приближённого нахождения корня мы познакомимся ниже, после того, как изучим понятие и свойства производной.
Заметим, что теорема не утверждает, что если её условия выполнены, то корень - единственный. Как показывает следующий рисунок, корней может быть и больше одного (на рисунке их 3).
Рис.3.18. Несколько корней функции, принимающей значения разных знаков в концах отрезка
Однако, если функция монотонно возрастает или монотонно убывает на отрезке, в концах которого принимает значения разных знаков, то корень- единственный, так как строго монотонная функция каждое своё значение принимает ровно в одной точке, в том числе и значение 0.
Рис.3.19.Монотонная функция не может иметь более одного корня
Непосредственным следствием теоремы о корне непрерывной функции является следующая теорема, которая и сама по себе имеет очень важное значение в математическом анализе.
Теорема 3.7 (о промежуточном значении непрерывной функции) Пусть функция непрерывна на отрезке и (будем для определённости считать, что ). Пусть - некоторое число, лежащее между и . Тогда существует такая точка , что .
Рис.3.20.Непрерывная функция принимает любое промежуточное значение
Доказательство. Рассмотрим вспомогательную функцию , где . Тогда и . Функция , очевидно, непрерывна, и по предыдущей теореме существует такая точка , что . Но это равенство означает, что .
Заметим, что если функция не является непрерывной, то она может принимать не все промежуточные значения. Например, функция Хевисайда (см. пример 3.13) принимает значения , , но нигде, в том числе и на интервале , не принимает, скажем, промежуточного значения . Дело в том, что функция Хевисайда имеет разрыв в точке , лежащей как раз в интервале .
Для дальнейшего изучения свойств функций, непрерывных на отрезке, нам понадобится следующее тонкое свойство системы вещественных чисел (мы уже упоминали его в главе 2 в связи с теоремой о пределе монотонно возрастающей ограниченной функции): для любого ограниченного снизу множества (то есть такого, что при всех и некотором ; число называется нижней гранью множества ) имеется точная нижняя грань , то есть наибольшее из чисел , таких что при всех Аналогично, если множество ограничено сверху, то оно имеет точную верхнюю грань : это наименьшая из верхних граней (для которых при всех ).
Рис.3.21.Нижняя и верхняя грани ограниченного множества
Если , то сущес и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.