На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Функции почек. Современная теория мочеобразования. Насосная функция сердца, ее регуляция. Сущность процесса обмена веществ. Прямая и косвенная калориметрия. Характеристика и функции продолговатого мозга. Варолиев мост, его функциональное значение.

Информация:

Тип работы: Контрольная. Предмет: Медицина. Добавлен: 11.04.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Алтайский государственный медицинский университет
Факультет «Сестринское дело»
Заочное отделение


КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Нормальная физиология»
Вариант № 41
Выполнил (а)
студент (ка) 285 группы

Гречишникова

Наталья Александровна

Дата выполнения_______
Проверил________

Барнаул - 2009
1. Функции почек. Современная теория мочеобразования

Процесс выделения имеет важнейшее значение для гомеостаза, он обеспечивает освобождение организма от конечных продуктов обмена, которые уже не могут быть использованы, чужеродных и токсичных веществ, а также избытка воды, солей и органических соединений, поступивших с пищей или образовавшихся в результате обмена веществ (метаболизма) [3, с. 278].
В процессе выделения у человека участвуют почки, легкие, кожа, пищеварительный тракт.
В первую очередь почки выполняют функцию органов выделения.
Основное назначение органов выделения состоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови [3, с. 278].
Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества. Легкие выводят из организма СO2, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении. Слюнные и желудочные железы выделяют тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты) и чужеродных органических соединений.
Экскреторную функцию выполняет печень, удаляя из крови ряд продуктов азотистого обмена. Поджелудочная железа и кишечные железы экскретируют тяжелые металлы, лекарственные вещества.
Почки выполняют ряд гомеостатических функций в организме человека и высших животных.
К функциям почек относятся следующие:
1) участие в регуляции объема крови и внеклеточной жидкости (волюморегуляция);
2) регуляция концентрации осмотически активных веществ в крови и других жидкостях тела (осморегуляция);
3) регуляция ионного состава сыворотки крови и ионного баланса организма (ионная регуляция);
4) участие в регуляции кислотно-основного состояния (стабилизация рН крови),
5) участие в регуляции артериального давления, эритропоэза, свертывания крови, модуляции действия гормонов благодаря образованию и выделению в кровь биологически активных веществ (инкреторная функция);
6) участие в обмене белков, липидов и углеводов (метаболическая функция);
7) выделение из организма конечных продуктов азотистого обмена и чужеродных веществ, избытка органических веществ (глюкоза, аминокислоты), поступивших с пищей или образовавшихся в процессе метаболизма (экскреторная функция) [4, с. 382].
Таким образом, роль почки в организме не ограничивается только выделением конечных продуктов обмена и избытка неорганических и органических веществ. Почка является гомеостатическим органом, участвующим в поддержании постоянства основных физико-химических констант жидкостей внутренней среды, в циркуляторном гомеостазе, стабилизации показателей обмена различных органических веществ.
Для исследования деятельности почек у человека и животных применяют различные методы, с помощью которых определяют объем и состав выделяющейся мочи, оцениваются характер работы клеток почечных канальцев, изменения в составе крови, оттекающей от почки.
Важную роль в изучении функции почки сыграли методы ее исследования у животных в естественных условиях. И. П. Павлов разработал метод наложения фистулы мочевого пузыря. Л. А. Орбели предложил способ раздельного выведения на кожу живота мочеточников каждой почки, что позволило изучать на одном животном регуляцию функции почек, одна из которых была денервирована, а вторая служила контролем [4, с. 382].
Современные представления о функции почки во многом основаны на данных применения методов микропункции и микроперфузии отдельных почечных канальцев.
Впервые извлечение жидкости микропипеткой из почечной капсулы осуществил А. Ричарде в Пенсильванском университете.
В настоящее время с помощью методов микропункции, микроперфузии, микроэлектродной техники исследуют роль каждого из отделов нефрона в мочеобразовании.
Применение микроэлектродов и ультрамикроанализа жидкости, извлеченной микропипеткой, позволяет изучать механизм транспорта веществ через мембраны клеток канальцев.
При исследовании функции почек человека и животных используют метод «очищения» (клиренса): сопоставление концентрации определенных веществ в крови и моче позволяет рассчитать величины основных процессов, лежащих в основе мочеобразования. Этот метод получил широкое применение в клинике.
Для изучения роли почки в синтезе новых соединений сопоставляют состав крови почечной артерии и вены. Исследование метаболизма отдельных участков почечных канальцев, полученных с помощью метода микродиссекции, использование тканевых культур, методов электронной цитохимии, биохимии, иммунохимии, молекулярной биологии и электрофизиологии дает возможность понять механизм работы клеток почечных клубочков и канальцев, их роль в выполнении различных функций почки [3, с. 279].
Образование конечной мочи является результатом трех последовательных процессов.
I. В почечных клубочках происходит начальный этап мочеобразования -- клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.
II. Канальцевая реабсорбция -- процесс обратного всасывания профильтровавшихся веществ и воды.
III. Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.
Скорость гломерулярной фильтрации, реабсорбции и секреции регулируется в зависимости от состояния организма при участии гормонов, эфферентных нервов или локально образующихся биологически активных веществ -- аутакоидов.
2. Насосная функция сердца, ее регуляция

Сердце располагается в центре грудной клетки, заключено в тонкую фиброзную околосердечную сумку, перикард, и поддерживается крупными кровеносными сосудами [1, с. 227].
Небольшое количество жидкости в полости перикарда смачивает поверхность сердца и способствует его свободным движениям во время сокращения и расслабления [1, с. 227].
Единственной функцией сердца является обеспечение энергией, которая необходима для циркуляции крови в сердечно-сосудистой системе.
Кровоток через все органы тела осуществляется пассивно и происходит только благодаря тому, что при осуществлении насосной деятельности сердца артериальное давление поддерживается на более высоком уровне, чем венозное
Насос правого сердца создает энергетический импульс, необходимый для передвижения крови через сосуды легких, а насос левого сердца обеспечивает необходимую энергию для перемещения крови через органы тела.
Кровь проходит через трикуспидальный клапан в правый желудочек, а отсюда прогоняется через клапан легочной артерии в легочное кровообращение через легочные артерии. Насыщенная кислородом венозная легочная кровь течет по легочным венам в левое предсердие и проникает через митральный клапан в левый желудочек. Отсюда кровь прогоняется через аортальный клапан в аорту для дальнейшего распределения по органам тела [1, с. 228].
Хотя в целом анатомические характеристики насоса правого сердца несколько отличаются от таковых левого сердца, тем не менее, их деятельность как насосов идентична.
Каждый насос состоит из желудочка, который является закрытой камерой, окруженной мышечной стенкой.
Клапаны имеют такое строение, чтобы кровоток мог осуществляться только в одном направлении, они пассивно открываются и закрываются, реагируя на динамику градиента давления вокруг них.
Насосная деятельность желудочка осуществляется за счет циклического изменения полости желудочков в результате ритмичного и синхронного сокращения и расслабления отдельных клеток сердечной мышцы, которые концентрически располагаются в толще стенки желудочка.
Когда мышечные клетки желудочка сокращаются, то в желудочковой ткани возникает концентрическое напряжение, которое создает постепенно нарастающее давление внутри камеры. Как только желудочковое давление превышает давление в легочной артерии (правый насос) или аорте (левый насос), кровь с силой выбрасывается из камеры через выходной клапан.
Эта фаза сердечного цикла, во время которой сокращаются клетки мускулатуры желудочка, называется систолой Так как во время систолы давление в желудочке выше, чем в предсердии, то атриовентрикулярный (АУ) клалан закрыт.
Когда мышечные клетки желудочка расслабляются, давление в желудочке падает ниже, чем в предсердии, AV клапан открывается и желудочек заполняется вновь кровью. Эта часть сердечного цикла называется диастолой.
Клапан на выходе во время диастолы закрыт, так как артериальное давление выше, чем внутрижелудочковое. После периода диастолического заполнения начинается систолическая фаза нового сердечного цикла.
3. Понятие об обмене веществ. Ассимиляция и диссимиляция. Основной обмен, условия, необходимые для его определения. Рабочий обмен. Прямая и косвенная калориметрия.

В результате обмена веществ непрерывно образуются, обновляются и разрушаются клеточные структуры, синтезируются и разрушаются различные химические соединения [3, с. 291].
В организме динамически уравновешены процессы анаболизма (ассимиляции) -- биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) -- расщепление сложных молекул компонентов клеток.
Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела [3, с. 291].
При этом происходит превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию.
Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белков, липидов, углеводов, витаминов, минеральных солей и воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его существования. Это достигается путем питания. Необходимо также, чтобы организм очищался от конечных продуктов распада, которые образуются при расщеплении различных веществ. Это достигается работой органов выделения [3, с. 294].
Интенсивность окислительных процессов и превращение энергии зависят от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов -- печени, почек, пищеварительного тракта), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии) [3, с. 294].
Для определения присущего данному организму уровня окислительных процессов и энергетических затрат проводят исследование в определенных стандартных условиях. При этом стремятся исключить влияние факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную работу, прием пищи, влияние температуры окружающей среды.
Энерготраты организма в таких стандартных условиях получили название основного обмена [3, с. 295].
Энерготраты в условиях основного обмена связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем -- дыхательной мускулатуры, сердца, почек, печени [3, с. 295].
Некоторая часть энерготрат в условиях основного обмена связана с поддержанием мышечного тонуса.
Освобождение в ходе всех этих процессов тепловой энергии обеспечивает ту теплопродукцию, которая необходима для поддержания температуры тела на постоянном уровне, как правило, превышающем температуру внешней среды.
Для определения основного обмена обследуемый должен находиться:
1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение;
2) натощак, т. е. через 12-- 16 ч после приема пищи;
3) при внешней температуре «комфорта» (18--20 °С), не вызывающей ощущения холода или жары [3, с. 295].
Основной обмен определяют в состоянии бодрствования.
Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8--10 % ниже, чем в состоянии покоя при бодрствовании [3, с. 295].
Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в килоджоулях (килокалориях) на 1 кг массы тела или на 1 м2 поверхности тела за 1 ч или за одни сутки [3, с. 296].
Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже.
Интенсивность основного обмена, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина основного обмена человека в возрасте 20--40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте основной обмен снижается.
Согласно формуле Дрейера, суточная величина основного обмена в килокалориях (H) составляет:
H=W/K•A0,1333 (1)
где W -- масса тела, г;
А -- возраст человека;
К -- константа, равная для мужчины 0,1015, а для женщины -- 0,1129.
Формулы и таблицы основного обмена представляют средние данные, выведенные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.
Определение основного обмена, согласно этим таблицам, у здоровых людей нормального телосложения дают приблизительно верные (ошибка 5--8 %) величины затраты энергии. Несоразмерно высокие данные для определенной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы.
Понижение основного обмена встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.
Если пересчитать интенсивность основного обмена на 1 кг массы тела, то окажется, что у теплокровных животных разных видов, и у людей с разной массой тела и ростом она весьма различна.
Если же произвести перерасчет интенсивности основного обмена на 1 м2 поверхности тела, полученные у разных животных и людей величины различаются не столь резко [3, с. 296].
Согласно правилу поверхности тела, затраты энергии теплокровными животными пропорциональны величине поверхности тела.
Ежедневная продукция тепла на 1 м2 поверхности тела у человека равна 3559 -- 5234 кДж (850--1250 ккал), средняя цифра для мужчин -- 3969 кДж (948 ккал).
Для определения поверхности тела R применяется формула:
R = К * масса тела (2)
Эта формула выведена на основании анализа результатов прямых измерений поверхности тела. Константа К у человека равна 12,3.
Более точная формула предложена Дюбуа:
R= W0,425 • H0,725 • 71,84 (3)
где W -- масса тела в килограммах,
Н -- рост в сантиметрах.
Результат вычисления выражен в квадратных сантиметрах.
Правило поверхности верно не абсолютно. Как показано выше, оно представляет собой лишь правило, имеющее известное практическое значение для ориентировочных расчетов освобождения энергии в организме.
Об относительности правила поверхности свидетельствует тот факт, что у двух индивидуумов с одинаковой поверхностью тела интенсивность обмена веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.
Деятельное состояние вызывает заметную интенсификацию обмена веществ. Обмен веществ при этих условиях называется рабочим обменом. Если основной обмен взрослого человека равен 1700-1800 ккал, то рабочий обмен в 2-3 раза выше [5, с. 212].
Таким образом, основной обмен исходным фоновым уровнем потребления энергии. Резкое изменение основного обмена может быть важным диагностическим признаком переутомления, перенапряжения и недовосстановления или заболевания.
Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом.
Биокалориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру.
В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере человеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного организмом тепла [5, с. 212].
Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров.
Методы прямой калориметрии очень громоздки и сложны. Учитывая, что в основе теплообразования в организме лежат окислительные процессы, при которых потребляется О2 и образуется СО2, можно использовать косвенное, непрямое, определение теплообразования в организме по его газообмену -- учету количества потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.
Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии). Кратковременное определение газообмена в условиях лечебных учреждений и производства проводят более простыми не камерными методами (открытые способы калориметрии).
Наиболее распространен способ Дугласа -- Холдейна, при котором в течение 10--15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого.
Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.
Кислород, поглощаемый организмом, используется для окисления белков, жиров и углеводов.
Окислительный распад 1 г каждого из этих веществ требует неодинакового количества О2 и сопровождается освобождением различного количества тепла. При потреблении организмом 1 л О2 освобождается разное количество тепла в зависимости от того, на окисление каких веществ О2 используется.
Количество тепла, освобождающегося после потребления организмом 1 л О2, носит название калорического эквивалента кислорода.
Зная общее количество О2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества -- белки, жиры или углеводы, окислились в теле. Показателем этого может служить дыхательный коэффициент.
Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:
С6Н12О6 + 6 О2 = 6 СО2 + 6 Н2О (4)
При окислении глюкозы число молекул образовавшегося СО2 равно числу молекул затраченного (поглощенного) О2.
Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро-- Жерара). Следовательно, дыхательный коэффициент (отношение СО22) при окислении глюкозы и других углеводов равен единице.
При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:
2 С3Н515Н31СОО)3 + 145 О2 = 102 СО2 + 98 Н2О (5)
Отношение между объемами углекислого газа и кислорода составляет в данном случае:
102 CO2/45 O2= 0,703 (6)
Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.
При смешанной пище у человека дыхательный коэффициент обычно равен 0,85--089. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода.
Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом.
Относительное постоянство дыхательного коэффициента (0,85--0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте. Количество потребленного организмом кислорода определяют при помощи различных спирографов.
Определив количество поглощенного кислорода и приняв усредненный дыхательный коэффициент равным 0,85, можно рассчитать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал [5, с. 213].
Способ неполного газового анализа благодаря своей простоте получил широкое распространение.
Во время интенсивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняется тем, что главным источником энергии во время напряженной мышечной деятельности является окисление углеводов. После завершения работы дыхательный коэффициент в течение первых нескольких минут так называемого периода восстановления резко снижается до величин меньших, чем исходные, и только спустя 30--50 мин после напряженной работы обычно нормализуется.
Изменения дыхательного коэффициента после окончания работы не отражают истинного отношения между используемым в данный момент кислородом и выделенной СО2.
Дыхательный коэффициент в начале восстановительного периода повышается по следующей причине: в мышцах во время работы накапливается молочная кислота, на окисление которой во время работы не хватало О2 (это так называемый кислородный долг).
Молочная кислота поступает в кровь и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.