На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Аналз математичних моделей технологчних параметрв та методв математичного моделювання. Задач технологчної пдготовки виробництва, що розвязуються за допомогою математичного моделювання. Суть нечткого методу групового врахування аргументв.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 18.07.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Курсова робота
Тема: Нечіткий метод групового врахування аргументів
Зміст

Вступ
1 Стан проблеми математичного моделювання та прогнозування технологічних параметрів
1.1 Аналіз математичних моделей технологічних параметрів
1.2Аналіз методів математичного моделювання
1.3 Задачі технологічної підготовки виробництва, що розв'язуються за допомогою математичного моделювання
1.4 Аналіз існуючих методів отримання математичних моделей
2 Нечіткий метод групового врахування аргументів
2.1 Метод групового врахування аргументів як основа нечіткого методу
2.2 Суть нечіткого методу групового врахування аргументів
Висновки
Література
Вступ

Приладобудування одна з найбільш перспективних та розвинутих галузей сучасного промислового виробництва України. Приладобудування має широку номенклатуру виробів, що випускаються. Для технологічного проектування виробництва продукції різної складності, що використовується в різних галузях потрібні великі виробничі потужності, матеріальні та фінансові витрати.
Застосування ЕОМ при рішенні задач технологічного проектування виробництва дозволяє оперувати при оцінці досить складними схемами і формулами, але часто із-за недостатньої формалізації завдань ці залежності неадекватні реальним виробничим процесам. У зв'язку з цим основним методом оцінки рішень і вибору оптимального рішення є моделювання. При моделюванні рішень в даний час широко застосовують методи математичного та імітаційного моделювання. Для цього створюються спеціальні засоби. Методи математичного та імітаційного моделювання реалізуються на ЕОМ.
Таким чином ефективне розв'язання задач технологічного проектування виробництва можливе при наявності адекватних математичних та імітаційних моделей параметрів і показників технологічних процесів виготовлення виробів приладобудування.
Завдання цієї роботи знайти шляхи підвищення продуктивності праці шляхом застосування математичного моделювання, зокрема прогнозування технологічних параметрів, що скорочує час та збільшує продуктивність робити технологів.
1 Стан проблеми математичного моделювання та прогнозування технологічних параметрів і постановка задачі технологічної частини дипломної роботи

1.1 Аналіз математичних моделей технологічних параметрів

З розвитком системних досліджень, з розширенням експериментальних методів вивчення реальних явищ всього більшого значення набувають абстрактні методи, з'являються нові наукові дисципліни, автоматизуються елементи розумової праці. Важливе значення при створенні реальних систем S мають математичні методи аналізу і синтезу, цілий ряд відкриттів базується на чисто теоретичних дослідженнях. Проте було б неправильно забувати про те, що основним критерієм будь-якої теорії є практика, і навіть суто математичні науки базуються в своїй основі на фундаменті практичних знань.
Одночасно з розвитком теоретичних методів аналізу і синтезу удосконалюються і методи експериментального вивчення реальних об'єктів, з'являються нові засоби дослідження. Проте експеримент був і залишається одним з основних і істотних інструментів пізнання. Подібність і моделювання дозволяють по-новому описати реальний процес і спростити експериментальне його вивчення. Удосконалюється і саме поняття моделювання. Якщо раніше моделювання означало реальний фізичний експеримент або побудову макету, що імітує реальний процес, то в даний час з'явився новий вигляд моделювання, в основі яких лежить постановка не тільки фізичних, але також і математичних експериментів.
Пізнання реальної дійсності є тривалим і складним процесом. Визначення якості функціонування великої системи, вибір оптимальної структури і алгоритмів поведінки, побудова системи S відповідно до поставленої перед нею мети - основна проблема при проектуванні сучасних систем, тому моделювання можна розглядати як один з методів, використовуваних при проектуванні і дослідженні великих систем.
Моделювання базується на деякій аналогії реального і уявного експерименту. Аналогія - основа для пояснення явища, що вивчається, проте критерієм істини може служити тільки практика, тільки досвід. Хоча сучасні наукові гіпотези можуть створитися чисто теоретичним шляхом, але, по суті, базуються на широких практичних знаннях. Для пояснення реальних процесів висуваються гіпотези, для підтвердження яких ставиться експеримент або проводяться такі теоретичні міркування, які логічно підтверджують їх правильність. У широкому сенсі під експериментом можна розуміти деяку процедуру організації і спостереження якихось явищ, які здійснюють в умовах, близьких до природних, або імітують їх.
Розрізняють пасивний експеримент, коли дослідник лише спостерігає процес, і активний, коли спостерігач втручається і організовує процес. Останнім часом поширений активний експеримент, оскільки саме на його основі вдається виявити критичні ситуації, отримати найцікавіші закономірності, забезпечити можливість повторення експерименту в різних точках простору досліджень.
У основі будь-якого виду моделювання лежить модель, що базується на деякій загальній якості, яка характеризує реальний об'єкт. Об'єктивно реальний об'єкт має деяку формальну структуру, тому для будь-якої моделі характерна наявність деякої структури, відповідній формальній структурі реального об'єкту, або його частині.
У основі моделювання лежать інформаційні процеси, оскільки саме створення моделі М базується на інформації про реальний об'єкт. В процесі реалізації моделі виходить інформація про даний об'єкт, одночасно в процесі експерименту з моделлю вводиться інформація, що управляє, істотне місце займає обробка отриманих результатів, тобто інформація лежить в основі всього процесу моделювання.
1.2 Аналіз методів математичного моделювання

Перші дослідження в області різання металів в Росії були проведені проф. И.А. Тімі. Його можна вважати основоположником науки про різання металів. Проф. П.А. Афанась'єв і проф. К.А. Зворикін провели цікаві дослідження і розвинули основи теорії різання металів.
Великий об'єм досліджень провів американський інженер, фахівець в області організації і нормування праці Ф.У. Тейлор. Вперше в світі він отримав формули (математичні моделі), що показують вплив різних чинників - умов обробки на швидкість різання. Головна мета досліджень була прикладною: "провести в механічній майстерні найбільш дешевим способом якомога більшу кількість роботи кращої якості".
Ф.У. Тейлор багато разів звертає увагу на складності отримання математичних моделей. При аналізі основної роботи "Мистецтво різати метали" не було виявлено використання статистичних методів. Методика вибору структури формул не приводиться.
Звідси можна зробити висновок - Ф.У. Тейлору необхідно було проявити мистецтво не тільки проведенні досліджень по різанню металів, але і в отриманні формул. Подальші дослідники використовували запропонований Ф.У. Тейлором степеневий вид формул і були вимушені розробляти методологію отримання самих моделей, що описують роботу технологічних систем.
Проф. С.С. Рудник на нараді учених з новаторами виробництва відзначала, що немає достатньо надійних і зручних розрахункових теоретичних формул зусилля і швидкості різання і доводиться користуватися формулами, отриманими експериментальним шляхом.
Раніше в дослідженнях при отриманні математичних моделей шляхом проведення експериментів з об'єктами і процесами був широко використаний метод однофакторного експерименту. У роботах Г.С. Ома, Дж. Клейнена, акад. А.Н. Крилова зустрічаємо рекомендації і згадки про використання так званого методу caeteris paribus, тобто змінювати чинники поодинці при інших рівних умовах.
Після публікації роботи Ф.У. Тейлора на зміну методології однофакторного експерименту в технології машинобудування прийшла методологія багатофакторного експерименту.
"Об'єднання" окремо отриманих однофакторних залежностей в "багатофакторну" модель не дозволяє отримати дійсно багатофакторну математичну модель: це не можна зробити по самій суті зміни тільки одного чинника при всіх постійних решті чинників. Другим недоліком вказаного методу є неможливість встановлення різних взаємодій чинників.
Взаємодії факторів в отримуваних моделях враховував М.М. Зорев.
У роботах Н.С. Равської і П.Р. Родіна з дослідженню процесів обробки металів різанням і різального інструменту для прогнозу і оптимізації критеріїв якості процесів використовується метод групового врахування аргументів (МГВА) і в структуру степеневих залежностей вводяться взаємодії модельованих факторів.
Розробка сучасного інформаційного забезпечення проектування, оптимізації, надійності і інших проблем створення високоякісного ріжучого інструменту в Донбасівській державній машинобудівній академії проводиться під науковим керівництвом Г.Л. Хаєта .
В розробку теоретичних і прикладних проблем математичного моделювання значний внесок внесли: С.А. Айвазян, Б.М. Базров, Н.А. Бородачев, В.П. Бородюк, Н.П. Бусленко, В.А. Вознесенський, В.Н. Вапник, А.Н. Гаврилов, В.М. Глушков, Е.З. Демиденко, А.Г. Івахненко, Н.М. Капустін, П.Г. Кацев, А.И. Кухтенко, Ю.В. Лінник, В.С. Михальович, Н.Н. Моїсеєв, В.В. Налімов, Н.С. Равська, Н.С. Райбман, А.А. Самарський, Л.К. Сизенов, В.И. Скурихін, А.В. Усов, Г.Л. Хаєт, Т. Андерсон, И.Н. Вучков, Н. Дрейпер. М.Дж. Кендалл, Ф. Мостеллер, И.А. Мюллер, С.Р. Рао, Б. Ренц, Дж. Себер, Г. Сміт, А. Стьюарт, Дж. Тьюки, Е. Ферстер, П. Эйкхофф і ін.
1.3 Задачі технологічної підготовки виробництва, що розв'язуються за допомогою математичного моделювання

Автоматизація виробництва вимагає інтеграції і автоматизації всіх робіт з технологічної підготовці виробництва (ТПВ). Інтеграція конструкторської, технологічної, організаційної і економічної підготовки виробництва полягає в забезпеченні достовірних своєчасних прямих і зворотних зв'язків між завданнями в цілях вибору оптимальних рішень на всіх етапах підготовки виробництва. Забезпечити безперервний ефективний зв'язок між завданнями можливо тільки в умовах автоматизації підготовки виробництва на основі єдиної інформаційної бази, яка включає постійну (нормативно-довідкову) і змінну інформацію, яка формується в процесі рішення задачі.
Але, не дивлячись на інтеграцію робіт, в підготовці виробництва можна виділити два самостійні види робіт, що відрізняються за складом і метою:
1. проектування або реорганізація виробництва (пряме завдання) (рис. 1);
2. експлуатація організованого виробництва (обернена задача проектування) (рис. 2).
3. Метою проектування виробництва є побудова виробничої системи і створення таких умов, які забезпечували б на протязі тривалого часу виготовлення запланованих і прогнозованих виробів в заданий термін і з мінімальними затратами. При проектуванні багатономенклатурної виробничої системи формується одна з найважливіших їх властивостей виробництва - його перенастроюваність (гнучкість). Метою сучасного виробництва є максимальне використання технічного рівня виробничої системи при виготовленні запланованих виробів. Це припускає максимізацію термінів проектування і виготовлення виробів при мінімальних витратах на ТПВ.

Рис. 1. Прямі завдання проектування

Рис. 2. Обернені завдання проектування

Інтеграція двох видів робіт при сумісному їх розгляді полягає в створенні при проектуванні виробництва технічної, організаційної і інформаційної баз, на основі яких приймаються рішення при експлуатації виробництва і досягається необхідна гнучкість виробничої системи.
В наведених схемах (рис. 1, 2) передбачені оцінки рішень і вибір ефективних рішень, для чого організовуються складні образні зв'язки (на схемах вказані не всі). У схемі проектування виробничої системи оптимізація проводиться при уніфікації, а також при проектуванні технологічного оснащення і виробничих підрозділів. При рішенні задач уніфікації визначається оптимальний склад уніфікованих виробів. При проектуванні групових операційних технологічних процесів (ТП) оптимізуються план обробки, склад інструментальних переходів, поєднання в обробці, при проектуванні технологічного оснащення - склад комплектів базових поверхонь і маршрутних ТП, при проектуванні виробничих підрозділів - маршрутний ТП, склад допоміжного, транспортно-накопичувального і складського устаткування, розміщення устаткування. У схемі (рис. 2) оптимізація виконується в процесі проектування ТП і формування плану-графіка при оперативному управлінні виробничими підрозділами. Очевидно, для розробки оптимальних варіантів робочих ТП необхідно допустити, щоб деяка сукупність деталей могла бути віднесена не до однієї, а до декількох груп. За рахунок такого «перетину» груп спрощується вибір оптимального варіанту ТП і плану-графіка виконання робіт.
Оцінка і порівняння варіантів рішення в обох схемах може проводитися по логічних і аналітичних залежностях. Застосування ЕОМ при рішенні задач ТПВ дозволяє оперувати при оцінці досить складними схемами і формулами, але часто із-за недостатньої формалізації завдань ці залежності неадекватні реальним виробничим процесам. У зв'язку з цим основним методом оцінки рішень і вибору оптимального рішення є моделювання. При моделюванні рішень в даний час широко застосовують методи математичного та імітаційного моделювання. Для цього створюються спеціальні засоби. Методи математичного та імітаційного моделювання реалізуються на ЕОМ.
До моделювання рішень вдаються в обох схемах (рис. 1, 2). Але в схемі проектування виробництва моделювання і вибір оптимального рішення проводять на основі довгострокового прогнозу розвитку виробів і технології, а в схемі експлуатації виробництва використовують реальні схеми організації технологічних процесів, устаткування, інструменти, пристосування і т.д. У зв'язку з цим в схемі проектування особливу увагу слід приділяти роботам по коротко- і довгостроковому прогнозуванню розвитку технології, виробів, устаткування.
Таким чином ефективне розв'язання задач ТПВ можливе при наявності адекватних математичних та імітаційних моделей параметрів і показників технологічних процесів виготовлення виробів приладобудування.
1.4 Аналіз існуючих методів отримання математичних моделей

Моделювання та прогнозування з використанням методу найменших квадратів.
В основі логіки методу найменших лежить прагнення дослідника підібрати такі оцінки и0 ,и1 ,…,иp для невідомих значень параметрів функції регресії відповідно и0 ,и1 ,…,иp, при яких згладжені (регресійні) значення и0+и1x1(1)+…+иpx1(p) результуючого показника якомога менше відрізнялись від відповідних спостережених значень yi. Спробуємо математично сформулювати цей принцип. Введемо у якості міри розходження згладженого та спостережуваного (в і-тому спостереженні) значень результуючого показника різницю
(1)
(еi - називаються нев'язками). Як бачимо, значення и0 ,и1 ,…,иp слід підбирати таким чином, щоб мінімізувати деяку інтегральну характеристику нев'язок. Нехай такою інтегральною характеристикою буде підганяння (вирівнювання) значень уі, за допомогою лінійної функції від xi(1) ,xi(2),…,xi(p) (i=1,2,…,n) величину
(2)
Безперечно, величина Q буде визначатися конкретним вибором значень оцінок параметрів и0 ,и1 ,…,иp . Оцінки за методам найменших квадратів (МНК - оцінки) и0 МНК ,и1 МНК ,…,иp МНК якраз і підбираються таким чином, щоб мінімізувати величину Q, визначену співвідношенням (1), тобто
(3)
Розглянемо випадок багатьох пояснюючих змінних у матричній формі:
вектор стовпчик нев'язок;
-(4)
оптимізуючий (по И) критерій методі найменших квадратів.
Перед тим, як виписати необхідні умови екстремуму, перетворимо праву частину (5)
(5)
В цьому перетворенні ми скористалися правилом транспонування добутку матриць, а також тим, що - число, яке співпадає зі своїм транспонованим значенням.
Необхідні умови, яким задовольняє розв'язок оптимізаційної задачі (1.5), отримуються шляхом диференціювання правої частини (5) по и0 ,и1 ,…,иp
,
Звідки
(6)
Основні припущення моделей, побудованих на основі МНК.
Для того, щоб МНК-оцінки були оптимальними, необхідно і достатньо, щоб виконувалися наступні вимоги.
1. Відсутність мультиколінеарності між пояснюючими змінними x1,…,xn, тобто фактори повинні бути незалежними між собою. Іншими словами, не повинно бути точного лінійного зв'язку між двома або більше факторами. При порушенні цієї вимоги матриця з рівняння (6) стає виродженою і її не можна обернути.
2. Незміщеність оцінок. Оцінка и параметра И називається незміщеною, якщо (для векторного параметра мається на увазі одночасне виконання для всіх компонентів вектора и та И)
3. Коваріаційна матриця дорівнює
Для досягнення цих вимог повинні виконуватися основні припущення моделі.
1. Випадкова величина і є нормально розподіленою.
2. Математичне сподівання і-го значення (i=1,n) випадкової величини « дорівнює нулеві
.
3. Випадкові величини незалежні між собою
.
4. Матриця спостережень X нестохастична. тобто вона утворюється з фіксованих елементів.
Оцінювання якості моделей за двома параметрами:
· коефіцієнтом детермінації. В основі оцінювання параметра лежить відношення частини дисперсії, що пояснює регресію та загальною дисперсією
(7)
Цей коефіцієнт показує ступінь тісноти статистичного зв'язку між побудованими модельними оцінками та спостережуваними даними.
· t - критерій Ст'юдента. В основі оцінки лежить припущення про нормальний розподіл випадкової величини з нульовим математичним сподіванням та постійною дисперсією у2
.
та, що у випадку 6агатофакторноі регресії кожний параметр також відповідає нормальному законові розподілу
(8)

з математичним сподіванням яке дорівнює значенню параметра узагальненої регресії в та дисперсією, яка дорівнює дисперсії випадкової величини у2, помноженої на відповідний діагональний елемент зворотної матриці. Справжнє значення дисперсії випадком, величини невідоме, тому ми змінюємо його на оцінку дисперсії. Така заміна призволить до того, що кожний елемент вектора (8) відповідатиме вже t-розподілу Ст'юдента з (n-k) ступенями вільності, що дає змогу обчислити t-статистику для кожного параметра:
зі ступенями вільності df=(n-k)
Т-розподіл Ст'юдента дає змогу протестувати гіпотезу щодо значення кожного параметра та побудувати їхні інтервали довіри.
· F-відношення показує ступінь адекватності моделі в цілому

Обчислений критерій порівнюється з табличним значенням . При ., модель вважається адекватною.
Основний і головним недоліком застосування даної методології є порушенім хоча б однієї з умов ефективності МНК-оцінок. Як бачимо, наприклад, при мультиколінеарності неможливо отримати оцінки взагалі. Також немає ніякої гарантії про відсутність автокореляції залишків отриманої моделі.
Другий недоліком даної моделі є обов'язкова умова переважання кількості спостережень над кількістю досліджуваних параметрів. При порушенні даної вимоги повністю ламається апарат дослідження якості отриманих моделей, оцінки значимості коефіцієнтів моделі.
Третім вирішальним недоліком є те, що модель не заходиться автоматично, а лише досліджуються висунуті гіпотези про взаємозв'язки між змінними. При обмеженому часі на моделювання цей недолік є провідним.
Як побачимо нижче, застосування нечіткого методу групового врахування аргументів уникає дані недоліки.
Моделювання процесів з використанням методів лінійного і нелінійного програмування.
Дану групу методів ще називають методами оптимального планування. 3 цієї назви і випливає їхня суть. Вона полягає в тому, що дослідник (аналітик) намагається досягти максимально корисного за складеним ним критерієм ефективності використання ресурсів при заданих обмеженнях на ці ресурси.
Цільовою функцією, як правило, бувають вимога максимізації або мінімізації. Обмеженнями моделей даного класу є символьне (у вигляді функцій) представлення обмеженості ресурсів.
Критерієм оптимальності розв'язку задач даного типу є максимум (мінімум) цільової функції на множині припустимих розв'язків моделі - множині утвореної обмеженнями моделі.
З математичної точки зору, основна ідея, застосування методів даного класу полягає у знаходженні оптимального поєднання ресурсів множинні припустимих планів. В залежності від форми цільової функції та вигляду обмежень методи поділяються на задачі лінійного та нелінійного програмування.
В задачі лінійного програмування цільова функція та обмеження лінійні. Множина допустимих рішень, в такому випадку - це опуклий многогранник. І задача оптимізації зводиться до перебору всіх крайніх точок даного многогранника.
В противному випадку, якщо цільова функція або обмеження набувають нелінійного характеру, для знаходження оптимального розв'язку використовується принцип опуклості (увігнутості) задачі нелінійного програмування, яке гарантує досягнення глобального оптимуму на множині припустимих рішень.
Недоліки цього класу моделей очевидні.
1. Необхідність мати достатньо обмежень для утворення множини припустимих рішень. У випадку незадоволення даної вимога множина рішень стає необмеженою і зникає гарантія отримання оптимального рішення. Дуже часто, отримані розв'язки не мають економічного обґрунтування.
и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.