На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


задача Нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность ее решения доказывается принципом максимума, а существование решения доказывается сведением задачи к эквивалентному ей интегральному уравнению.

Информация:

Тип работы: задача. Предмет: Математика. Добавлен: 13.05.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


Бабаев Х.

Об одном аналоге задачи Бицадзе-Самарского
для смешанно-составного уравнения.

РЕФЕРАТ
В данной работе для смешанно-составного уравнения ставится и исследуется одна нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность решения изучаемой задачи доказывается принципом максимума, а существование решения доказывается сведением изучаемой задачи к эквивалентному ей интегральному уравнению.
Библиография 4 названия
Об одном аналоге задачи Бицадзе-Самарского
для смешанно-составного уравнения
В первые в работе [1] была поставлена и иcследована нелокальная краевая задача для элиптического уравнения, которая является обобщением задачи Дириxле. В данной работе иcследуется один из аналогов этой задачи для уравнения.
Пусть: Д область ограниченная отрезками OB, BE, AE, OC, AC, прямыx x=0, y=1, x=1, x+y=0, x-y=1, где А, B, O, C, E точки с координатами (1;0), (0;1), (0;0), (;), (1;1) соответственно.
Задача. Найти регулярное в области Д/OА решение уравнения (1) довлетворяющее краевым
(2)
(3)
(4)
(5)
условиям и условиям склеивания
(6)
Где -задание функции, причем -известные постоянные; постоянная в удовлетворяет неравенству -внутренняя нормаль.
Любое регулярное решение уравнения (1) в области
представлено в виде
(7)
где z(X,У)-регулярное решение уравнения
(8)
W (y)-дважды непрерывно дифференцируемая функция.
Без ограничения общности можно предположить, что W (0)=0б W (1)=0, сперва приводим доказательство единственности решения изучаемой задачи.
Теорема. Если то функция U (Х,У)=0 в области Д.
Доказательство. На основании (2), (7) задача редуцируется к определению регулярного решения уравнения (8) при У>0 удовлетворяющего краевым условиям
ц(У)-W(У), Z()=ц(У)-W(У)
где U(1,У)= ц(У), U()=ц(У) (9)
Из (6) следует
Учитывая (3) и условие (9) получим:
L ц(x)
общее решение уравнения (1) в области Д={(x,y)Є D, y<0}даётся известной формулой Даламбера
реализуя условие (10) из (11) имеем
ц(x)
или ц(x)-
отсюда ц(x+y)-
тогда из (11) получим U(X,Y)= ц(X+Y)- (12)
Используя (4) (ш(X)?0) из (12) найдем
цd+ц (13)
дифференцируя выражение (13) имеем
ц+ц=0
разделяя на (x)?0 получим
ц(x)+ ц=0 (14)
предпологая
имеем:ц(x)-L(x) ц(вx)=0 (15)
функциональное уравнение (15) не имеет нетривиальных решений.
Действительно применяя метод итерации находим
ц(х) и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.