На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 03.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Федеральное агентство по образованию
Среднего профессионального образования
«Профессиональный лицей №15»
Кафедра: Станочник (металлообработка)
Контрольная работа
по курсу: «Математика»
на тему: «Область определения функции»
Выполнил студент гр. Т 102
Бахирев Я.А.
Проверил: Корнилова Н.Г.
Воткинск
2010
1. Решить неравенство

x2 - 3x+5
x-1

Решение.
Для решения неравенств, правая часть которых - нуль, а левая - алгебраическая дробь, т.е., неравенств вида используем метод интервалов.
Обозначим f(x) x2-3x+5 и найдем область определения
x-1
D(f) функция f (x). Для этого определим нули знаменателя функции:
x-1=0, x=1, D(f)=(-; 1) (1;).

Найдем нули функции f (x). Для этого решим уравнение:
x2- 3x+5 x2-3x+5=0 (1)
x-1x-1=0 (2)

Решая уравнение (1), получим:
x2- 3x+5=0, D= (-3)2-4 1 5=9-20<0 - уравнение не имеет решений.
Функция f(x) непрерывна на множестве D (f) и не имеет нулей. Точка 1 разбивает область определения на промежутки знакопостоянства значений функции. Определим знак значения функции f (x) на каждом промежутке знакопостоянства.
Для этого достаточно определить знак значения функции в любой точке промежутка:
f(0) 02-3 0+5 f (2)= 22-3 2+5

0-1 2-1
Отметим, для наглядности, на рисунке промежутки знакопостоянства значений функции f (x) и запишем решения данного неравенства:
f (x) < 0 f (x)>0
f (x) > 0, x c (1;).
Ответ: (1;).
2. Решить неравенство

Log5(3x+1)<2
Решение.
Используя свойства логарифмов положительных чисел

loga a=1
m loga b =loga bm

преобразуем неравенство к простейшему логарифмическому неравенству вида
loga f (x) < loga g(x)

Log5(3x+1)<2, log5(3x+1)<2log55, log5(3x+1)<log552.

При a>1 функция y=loga t в области определения D(loga), задаваемой неравенством t > 0, монотонно возрастает, то есть, если t1>t2>0, то loga t1 > loga t2. Учитывая это, запишем затем, используем формулу перехода от простейшего логарифмического неравенства к двойному неравенству:
Если a > 1, то
Loga f(x) < loga g(x) 0 < f(x) < g(x)

log5(3x+1) < log552, 0 < 3x + 1 < 52, -1 < 3x < 25 - 1,< и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.